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Summary 

1. Substratum stability and shear stress exerted by flowing water can have a strong influence 

on the structure of benthic communities. Bed stability can be characterised in a variety of 

ways, e.g. flow competence, threshold of particle entrainment, measures of erosion and 

deposition, particle transport distance, abrasion and bedload transport rate. This paper 

reviews methods for the quantification of bed stability and shear stress in streams and rivers 

that are relevant for the examination of the relationships between stream biota and bed 

stability. 

2. The most suitable method for a research project depends mainly on the objectives. The 

targeted group of biota, spatial and temporal scale of investigation, as well as hydraulic 

conditions and substratum characteristics at the study site(s) determine the choice of a 

technique for the assessment of bed stability. 

3. Indirect measurement of shear stress can be more accurate than calculations based on the 

DuBoys equation. However, the latter is preferred for reach-wide applications within the 

limits imposed by hydraulic conditions. The entrainment of the substratum is most effectively 

assessed using a combination of shear stress and competence equations, but the latter require 

careful parameterisation. At the patch-scale, direct measurement of entrainment force is a 

valid alternative.  

4. Morphometric budgeting is the most comprehensive and least invasive technique for the 

assessment of rates of erosion and deposition. The transport of substratum particles is 

efficiently monitored with in situ marked or active tracer particles which allow for rapid and 

non-invasive identification and high recovery rate. As the assessment of bedload transport 

rate by formulae can be inaccurate, direct measurement is preferred. However, bedload traps 

interfere with the substratum and continuity of measurement with samplers is limited. Thus 

developments in the sector of acoustic and piezoelectric devices offer a potential alternative.  

5. The abrasive forces by suspended sediments on stream biota are effectively evaluated 

with artificial blocks that are fixed on the stream bed. Descriptive surveys that assess bed 

stability offer an alternative to direct measurement and calculations. They are straightforward 

and non-invasive but can be observer-biased. If single methods do not provide useful links 

with biological data this may be improved by the application of a multivariate approach. 

6. Many of the methods assessed have not yet been applied in research on benthic 

communities, but these hydraulic and geomorphologic techniques offer considerable potential 

for the assessment of bed stability in stream ecology. 
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Introduction 

Floods are an important controlling force on lotic ecosystems (Death, 2008) and influence the 

composition of benthic communities (Resh et al., 1988; Reice, Wissmar & Naiman, 1990; 

Lake, 2000). Most stream ecologists agree that discharges exceeding some threshold act as a 

disturbance to benthic communities, although determining those values can be problematic 

(Poff, 1992; Death & Winterbourn, 1994). 

Under low water velocity and shear stress sediment is not entrained and the impact on 

benthic organisms is limited to shear force (drag and lift) exerted by flowing water. This 

alone may cause the patchy distribution of benthic organisms and can lead to downstream 

displacement of macrophytes (Biggs et al., 2001), periphyton (Biggs, Smith & Duncan, 1999; 

Suren & Duncan, 1999) and invertebrates (Lancaster & Hildrew, 1993a; Bond & Downes, 

2000; Bond & Downes, 2003). As velocity and shear stress increase, phase-I bedload 

transport occurs when fine sediments may be winnowed (washed out) and rolled over a 

mostly stable coarser bed. This can lead to an additional impact on stream biota by abrasion 

(Downes et al., 1998; Bond & Downes, 2003). At a critical flow velocity, the movement of 

larger particles is initiated (phase-II bedload transport). This usually involves disruption of 

any armour layer (see Appendix A for definitions) at the bed surface and can result in patchy 

areas of scour and deposition (Powell, 1998; Matthaei, Peacock & Townsend, 1999b). In 

more extreme events, the whole bed may be mobilised, altering the habitat structure 

dramatically. This can lead to displacement of plants and invertebrates (Giberson & Caissie, 

1998; Matthaei, Arbuckle & Townsend, 2000; Bond & Downes, 2003) and mortality of 

invertebrates crushed by rolling stones. Thus floods which induce bedload transport are often 

associated with the most dramatic changes in the composition, density and biomass of benthic 

invertebrate communities (Holomuzki & Biggs, 2000; Death, 2008) and periphyton (Biggs et 

al., 1999). 

To examine the relationship between benthic biota and bed stability it is essential to 

quantify the latter accurately (Gordon, McMahon & Finlayson, 1992). There have been 

numerous attempts to do so, but most of the methods developed for stream hydraulics and 

fluvial geomorphology have yet to be adopted by stream ecologists. Furthermore, recent 

technological advances (e.g. acoustic and electronic sensors, active tracer particles and 

topographic survey methods) offer considerable potential for improving the measurement of 

bed movement for the study of stability-biota relationships. 
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This review presents methods that are used to assess different aspects of bed stability at 

different spatial and temporal scales, including: 1) shear stress, 2) entrainment, 3) erosion and 

deposition, 4) bedload transport and 5) abrasion. The techniques are evaluated not only for 

their potential to predict shear force and sediment movement per se, but also for their ability 

to explain biota-substratum stability relations. 

 

Characteristics of bed stability 

Shear stress 

When stream flow lacks sufficient energy to move bedload (non competent discharges), or 

where the bed is armoured or substratum particles are locked together (imbricated), the shear 

stress exerted on benthic biota by increased flows may be sufficient to alter the composition 

of benthic communities (Lancaster & Hildrew, 1993a; Bond & Downes, 2000; Bond & 

Downes, 2003). Shear forces exerted on organisms depend on their morphometry as well as 

kinematic viscosity and fluid velocity. Hence, the measurement of the latter can be used to 

determine shear stress. However, measurement of the velocity that affects small benthic 

organisms is difficult due to the steep velocity gradient in the boundary layer. Consequently 

indirect methods, like exposure to the flow of particles of known weight and/ or size, are 

employed to estimate the shear stress exerted at the channel bottom. 

DuBoys equation 

In stream ecology it is common to use the DuBoys equation (1) to gain an estimate of the 

mean boundary shear stress τo at the reach level (e.g. Statzner, Gore & Resh, 1988; Matthaei 

et al., 1996; Duncan, Suren & Brown, 1999; Matthaei et al., 1999b). 

τo = ρf g R Sf          (1) 

The friction slope Sf (see Appendix B for symbol annotation) differs from the bed slope 

Sb and the water surface slope Sw, because flow resistance is responsible for energy losses 

(Robert, 1990). Sf can be calculated using a backwater calculation if flow data and channel 

geometry are available. However, the observed differences between Sf and Sw are often slight, 

especially under conditions of high discharge (Powell & Ashworth, 1995; Milan et al., 2001). 

Thus, the more easily measured Sw is an acceptable first-order approximation for Sf (Baker & 

Ritter, 1975; Lorang & Hauer, 2003). When the width-depth ratio of the channel is high 

(>16.9 according to Giberson & Caissie, 1998), which is common in coarse bedload 

transporting streams, mean flow depth h may be substituted for the hydraulic radius R (Baker 
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& Ritter, 1975; Powell & Ashworth, 1995; Downes, Glaister & Lake, 1997; Giberson & 

Caissie, 1998). The use of local bed slope and depth instead of R and Sf in (1) might be 

preferable for the estimation of stream stability at the patch-scale, although actual shear stress 

is underestimated (Lorang & Hauer, 2003). Furthermore, it should be remembered that fluid 

density ρf is usually higher than the 1000 kg*m-3 typically used because of suspended 

material, particularly during floods (Giberson & Caissie, 1998). 

The DuBoys equation is strictly applicable only under uniform flow conditions 

(implying even bed topography and regular channel geometry) in wide channels (W/h > 20) 

(Gordon et al., 1992; Gore, 1996). Three-dimensional flow effects (Milan et al., 2001), 

bedform structures (e.g. pebble clusters and imbrication) (Carson & Griffiths, 1987) and the 

exposure to the thalweg (main thread of maximum velocity flow) are not accounted for. The 

values derived are high compared with local shear stress calculated from velocity profiles 

(Robert, 1990), but tend to underestimate the effective shear force (Carson & Griffiths, 1987).  

The theoretical assessment of mean boundary shear stress is mostly based on the 

DuBoys equation. The choice of the parameters determines scale and accuracy of the 

calculation (Table 1). As the flow in natural rivers (especially shallow high gradient boulder- 

and gravel-bed rivers) is usually not uniform, the explanatory power of equations assuming 

the latter is limited (Campbell & Sidle, 1985). This may be enhanced by the inclusion of 

parameters like flow resistance, channel geometry and the energy slope (Lorang & Hauer, 

2003). Thus shear stress estimations based on the DuBoys formula apply best under 

conditions of increased relative depth (R/D84 > 4 (Hey, 1979)), e.g. during high discharges, 

when flow is approximately uniform (Bhowmik, 1982; Milan et al., 2001). However, mean 

boundary shear stress from the DuBoys equation has been linked with the distribution of 

benthic invertebrates in several studies under various discharges (Statzner et al., 1988; 

Matthaei et al., 1996). The equation provides a useful tool for reach-wide investigations of 

shear stress biota relationships. 

FST-hemispheres 

Calibrated FliesswasserStammtisch (FST) hemispheres of different densities offer a measure 

of actual near-bed shear stress at a particular point in time (Statzner & Muller, 1989; Statzner, 

Kohmann & Hildrew, 1991). Despite some debate about the usefulness of FST-hemispheres 

for assessment of near-bed shear stress (Frutiger & Schib, 1993; Statzner, 1993; Dittrich & 

Schmedtje, 1995) they performed consistently well as indicators of ecologically relevant 

near-bed shear forces in hydraulically rough stream beds (Lancaster & Hildrew, 1993b; 
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Scarsbrook & Townsend, 1993; Dittrich & Schmedtje, 1995; Hardison & Layzer, 2001; 

Merigoux & Doledec, 2004). However, Frutiger & Schib (1993) reported that only 50% of 

their benthic invertebrate taxa showed a relation between abundance and FST data. Statistical 

models based on FST measurements allow long-term characterisation of shear stress 

variability (Lamouroux et al., 1992) that can be linked with variation in the density of 

invertebrate taxa in different hydraulic microhabitats (Doledec et al., 2007). FST-

hemispheres are a useful tool for investigating the spatial distribution of stream biota at base 

flow (Table 1). However, at higher discharges application is limited due to interference from 

bedload (impacts from saltating particles) and safety reasons (but see Gore et al., 1994). 

Near-bed flow velocity 

Local shear stress can be estimated from measurements of flow velocity (e.g. single near-bed, 

vertical profile). Often a semi-logarithmic relationship between depth and velocity is assumed 

which is violated in reaches with high relative roughness (e.g. h/D84 < 3 (Bray, 1980)). 

Wiberg & Smith (1991) found that local shear stress calculated from depth averaged velocity 

derived from a profile was accurate for h/D84 > 1. In comparison, single point near-bed 

measurement allows a calculation of shear stress for the widest range of conditions, but is not 

as accurate as the depth averaged method. Estimations of boundary shear stress based on the 

relation of v and ln(1-h) in velocity profiles (e.g. Bhowmik, 1982) are the least accurate and 

apply in the most restricted flow conditions but require no estimate of bed roughness 

(Wilcock, 1996). 

Effenberger et al. (2006) found a strong relationship between point measurements of 

near-bed flow velocity and the spatial distribution of invertebrates. Death & Winterbourn 

(1994) also found a strong positive correlation between the variability of near-bed flow 

velocity and the movement of marked stones. 

Locally, indirect measurement of shear stress can provide more accurate results than the 

DuBoys approach. It may also give an indication of the impact of shear stress on stream biota 

(Table 1) although the small spatial and temporal extent of the measurements limits the use 

for larger reaches and/or long-term studies. 

 

Substratum entrainment 

Relationship between substratum grain size and tractive force 

The proximal equality between mean boundary shear stress, calculated by the DuBoys 
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equation, and the maximum diameter of entrained particles (rounded, non-cohesive, > 0.05 m) 

(Lane, 1955) has been widely exploited to define critical particle size for entrainment 

(Newbury, 1984; Death & Winterbourn, 1994; Muotka & Virtanen, 1995; Giberson & 

Caissie, 1998). Even for non-rounded particles comparable relationships have been developed 

(Newbury, 1984). Although this relationship can provide a good indication of habitat stability 

amongst sites within a stream (Giberson & Caissie, 1998), it can overestimate particle 

movement in steep or narrow rivers (W/h < 16.5) as well as underestimate it in wide and 

shallow channels (W/h > 36.9) (Hallisey & Belt, 1996). This approach is subject to the same 

constraints as the DuBoys equation and does not account for potential equal mobility due to 

hiding and protrusion of particles. Thus the applicability of this concept is constrained to 

rivers with a high relative depth (h>>D50) (approx. 6-7 (Newbury, 1984), >10 (Duncan et al., 

1999)) and bed slopes less than 0.01, conditions which are more likely to be met in lowland 

rivers. 

Not surprisingly, therefore, several authors found no significant relationship with other 

measures of bed stability when they applied this approach in steep and shallow streams 

(Death & Winterbourn, 1994; Duncan et al., 1999). In contrast Cobb, Galloway & Flannagan 

(1992), Scarsbrook & Townsend (1993) and Muotka & Virtanen (1995) found a link between 

critical tractive force and the distribution of invertebrates and bryophytes. However, the 

relationship between tractive force and critical particle diameter cannot predict entrainment 

of the substratum consistently and applies in a limited range of rivers with gentle slope and 

high relative depth. 

Shields equation 

The Shields equation (2) (Shields, 1936) relates boundary shear stress to particle entrainment. 

It estimates the critical shear stress for a substratum grain size Di at the point of incipient 

motion. 

τcrit = θcrit (γs - γf) Di         (2) 

The Shields coefficient θcrit is a non-dimensional variable dependent on particle shape, 

substratum particle size distribution, exposure and other packing factors (Lorang & Hauer, 

2003). It reaches a constant value for non-cohesive materials larger than 6 mm (Lorang & 

Hauer, 2003) for hydraulically rough beds (boundary Re > 100). θcrit varies coarsely between 

0.02 and 0.08, but more extreme values have been reported (Ashworth & Ferguson, 1989; 

Buffington & Montgomery, 1997; Shvidchenko, Pender & Hoey, 2001). Increasing channel 

slope (related to relative flow depth (h/D50)), decreasing relative size (Di/D50) and substratum 
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heterogeneity (size distribution) increases the Shields coefficient systematically (Bathurst, 

Graf & Cao, 1987; Buffington & Montgomery, 1997; Shvidchenko et al., 2001). Furthermore, 

the definition of incipient motion (e.g. reference- or visual observation-based), grain shape, 

orientation, hiding effects (e.g. sheltering of smaller particles by larger), as well as discharge 

and bank vegetation influence θcrit (Andrews, 1984). Values for θcrit derived from visual-

based studies (typically around 0.045) are recommended for analyses of incipient motion in 

discrete bed surface patches. In contrast, the usually higher reference-based θcrit may give a 

better estimate of entrainment on a reach-average level because of its derivation from bedload 

transport measures and thus the integration of differential bed patch mobility (Buffington & 

Montgomery, 1997). Compared with the original Shields coefficient of 0.06, in gravel bed 

streams with a heterogeneous substratum, a lower θcrit is expected, for instance down to 0.02 

in high gradient rivers (Sw > 0.002), where DMax/D50 > 22 (Lorang & Hauer, 2003) and the 

effects of form roughness and form drag resistance are considerable. A value of 0.045 for θcrit 

has been used in many studies and is widely accepted for beds with coarse particles and high 

boundary Reynolds numbers (Miller, McCave & Komar, 1977; Yalin & Karahan, 1979; 

Komar, 1989; Duncan et al., 1999). 

There have been several attempts to improve the Shields equation and to widen its 

range of use (e.g. Komar, 1987; Thompson & Croke, 2008). Formulae such as Equation (3) 

incorporate the effects of hiding and heterogeneous beds in the Shields equation (Komar, 

1989): 

τcrit = 0.0045 (γs - γf) D50
0.65 Di

0.35       (3). 

Duncan et al. (1999) also applied corrections to allow for small relative depths (h/D < 

2.5) and high water surface slopes. Thompson & Croke (2008) incorporated the effects of bed 

form, microtopography and bed packing into the Shields equation. Lorang & Hauer (2003) 

found that critical shear stress calculated with a modified Shields equation overestimated the 

actual value for large cobble- and boulder-bed rivers by as much as an order of magnitude. 

Andrews (1983) (cf. Parker, Klingeman & McLean, 1982) proposed the following 

relationship to calculate θcrit for 0.3 < Disurface/D50subsurface < 4.2:  

θcrit = 0.0834 (Disurface/D50subsurface)
-0.872      (4). 

This highlights the fact that critical shear stress is influenced more by relative grain size 

than absolute grain size (Ferguson, 1994; Shvidchenko et al., 2001). With the typical ratio of 

D50surface/D50subsurface = 2.5 for gravel bed rivers (Parker et al., 1982) θcrit can be estimated. 

However, in other studies the value for the first factor in (4) lies between 0.019 and 0.087, 
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whilst the exponent ranges from -0.32 to -1.25 (Buffington & Montgomery, 1997) and the 

values differ between riffles and pools (Sear, 1996). 

A comparison between mean boundary shear stress (1) and critical shear stress for a 

particular grain size has been used to indicate zones of entrainment (Milan et al., 2001), 

calculate the critical size of substratum particles moved (Duncan et al., 1999) and define 

critical depth (Fuller et al., 2002). Predictions of entrainment were well correlated with 

measurements of morphological change in most areas of a gravel bed stream (Milan et al., 

2001) and entrainment of in situ tagged particles (Biggs et al., 2001). Bed stability 

measurements derived from a combination of (1) and (3) showed a strong relationship with 

the composition of bryophyte communities (Duncan et al., 1999) and periphyton biomass 

(Biggs et al., 2001) (Table 2). 

Given the difficulties of selecting the most suitable parameters for empirical equations 

or the Shields coefficient, the calculation of the critical shear stress for entrainment is not 

straightforward, especially when a wide range of streams is being examined. However, for 

reach-scale investigations of the relationship between biota and bed stability a combination of 

the DuBoys formula and an advanced Shields equation (e.g. Duncan et al. 1999) may be 

useful. 

Empirical equations of critical shear stress 

Several studies have produced empirical entrainment equations of the type τcrit = a Db 

(Thompson & Croke, 2008), where a and b range from 26.6 to 110 and 0.38 to 1.21 

respectively. The large range in parameter values is due to the difference in substratum 

assemblage between sites and differing methods used to define parameters (Lorang & Hauer, 

2003). These empirical entrainment equations are thus too stream-specific to allow a general 

application of this approach. 

Spring balance 

Downes et al. (1997) used spring balances to measure the force necessary to initiate motion 

of particles in streams. This cannot be related directly to the critical shear stress but high 

forces will generally equate with high shear stresses as long as selective entrainment occurs 

(Downes et al., 1997). This is a labour intensive methodology for reach-scale studies and the 

choice of particles can be subjective, but it will reflect actual shear stress to entrain particles 

better than indirect measurements. 
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Erosion and deposition 

Scour chains and other buried devices 

In both ecology and hydrology the deployment of metal scour chains is a common method for 

measuring scour and deposition of bed materials (Laronne & Duncan, 1992; Laronne et al., 

1992; Palmer, Bely & Berg, 1992; Matthaei et al., 1999b; Matthaei, Guggelberger & Huber, 

2003; Effenberger et al., 2006). It allows quantification of the height of fill and the depth of 

scour with an accuracy ranging from <D25 to D84 (Laronne et al., 1994; Matthaei et al., 2003) 

on a patch-scale systematic grid. Installation is relatively rapid (33 chains per person per day 

(Matthaei et al., 1999b)) and causes little damage to sediment structure. Effenberger et al. 

(2006) observed no long-term effects on the invertebrate community. The chains proved to be 

resistant to dislocation and can be relocated after floods with the help of coloured ropes or 

magnetic tracers. However, the assessment of temporal variation of scour and fill during bed 

moving events is limited and relocation is required after each event that is likely to result in 

substratum movement (Laronne et al., 1994). As (phase-I) bedload transport occurs in 

patches in gravel bed rivers the suggested resolution of measurement is higher than one 

observation per square metre (Matthaei et al., 1999b; Laronne, Garcia & Reid, 2001). 

Scour chains were employed for the identification of stable bed patches which can 

serve as local refugia for benthic organisms during floods (Matthaei et al., 1999b). Measures 

of scour and fill using scour chains have been related to density and vertical distribution of 

invertebrates (Palmer et al., 1992; Effenberger et al., 2006) as well as to the spatial 

distribution of benthic algae (Matthaei et al., 2003) (Table 3). 

Alternatively, metal scour plates, buried at fixed depths can serve as measurement of 

scour depth and in sandy streams columns of dyed sand inserted in the top layer of the bed 

can replace scour chains (Palmer et al., 1992). Wilcock (1997) measured the depth of 

entrainment with buried painted gravels. But both installation and retrieval require a 

disturbance of the substratum. Hence these methods are not appropriate for studies targeting 

benthic biota or for armoured and imbricated streambeds. Pressure pillows inserted into the 

surface of an artificial stream bed were used by Kurashige (2002) to measure sedimentation 

rates continuously but the construction was susceptible to damage during high bedload 

discharges. 

Morphometric sediment budget models 

Movement of the substratum is reflected in changes of the morphology of the channel 

(Leopold, 1992). These changes can be assessed with repeated airborne surveys using digital 
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photogrammetry or laser altimetry (e.g. Lane, 2001; Westaway, Lane & Hicks, 2001) or 

ground surveys employing tacheometry or photogrammetry (e.g. Ferguson & Ashworth, 1992; 

Lane, Chandler & Richards, 1994; Fuller et al., 2002; Heritage & Milan, 2004). 

Ground surveys have been conducted with a theodolite-EDM system (Chappell et al., 

2003; Fuller, Large & Milan, 2003b; Fuller et al., 2005) but more recently also with Real 

Time Kinematic differential-GPS (RTK-dGPS) (Brasington, Rumsby & McVey, 2000; Fuller 

& Hutchinson, 2007). The difference in altitude of cross-sections or digital elevation models 

(DEM) between surveys is used to determine areas of quantified deposition or erosion 

(Brasington et al., 2000; Brewer & Passmore, 2002). The calculation with DEMs is 

preferable because sediment budgets derived from planform and cross-section measurement 

underestimate the magnitude of volumetric change compared with DEM subtraction, nor do 

they permit identification of the spatial pattern of volumetric change (Fuller et al., 2003a). 

Altitude measurements with RTK-dGPS or a theodolite-EDM system are, within the limits 

imposed by surface roughness (e.g. D50) highly accurate and more than 2000 points with high 

spatial resolution can be obtained per day (Brasington et al., 2000). The use of a GPS system 

is, however, limited at closed canopy sites and in deep valleys where satellite reception is 

critical. 

Brasington, Langham & Rumsby (2003) indicate that ground surveys are much more 

precise than remote survey methods (especially at submerged zones; cf. Westaway, Lane & 

Hicks, 2000) and thus preferable for morphometric budgeting. However, for very wide river 

beds or reaches of more than a few hundred metres in length, the use of photogrammetry 

should be considered (Lane, Westaway & Hicks, 2003). 

Morphometric budgeting has the advantage over scour chains to be less invasive and 

the ability to monitor an entire reach. However, scour chains may integrate effects of scour-

fill compensation during single events. Both techniques give a lower bound estimate of the 

sediment flux because they do not account for substratum that is transported completely 

through the reach (Fuller et al., 2003a). According to Martin & Church (1995) the 

morphometric approach provides information of a quality comparable or superior to that of 

direct measurements of transport, yet requires less field effort. Its application is restricted to 

gravel- and cobble-bed rivers. To the best of our knowledge these measures have not been 

used in connection with biological data. 
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Bed load transport 

Bedload is the sediment component that moves downstream by rolling or saltation. In rivers 

and streams where hydraulic conditions are generally unsteady (Lisle et al., 2000) and spatial 

substratum grain size variability is high (Dollar, 2002), transport rate is highly variable in 

space and time (Gomez, 1991; Batalla, 1997; Ferguson, 2003; Vericat & Batalla, 2007). 

Bedload discharge also depends on the supply of sediments within the catchment and lateral 

and longitudinal connectivity of the river (Dietrich et al., 1989; Hooke, 2003; Fryirs et al., 

2007). The transport of substratum can be expressed as volumetric change in sediment 

budgets, transport rate at a point, cross-sectional discharge or distance travelled by individual 

particles. Techniques for measuring bedload transport are ideally non-intrusive, flexible and 

representative for different types of transport (Ergenzinger & de Jong, 2003). To date most 

stream ecologists have only been interested in qualitative measures of bed stability. At the 

single particle-scale, qualitative assessment might be sufficient, but for whole reaches 

bedload transport occurs on a continuous graduation. For stream ecologists, quantitative 

measures of bedload transport can act as a superior indicator for the level of bed stability, 

particularly if only partial mobilisation of the bed occurs. 

Tracer particles 

Tracers are well suited for the stochastic and spatially variable nature of bedload transport 

because they reflect the movement of individual particles of known characteristics (Wilcock, 

1997). Marked or tagged natural particles and artificial tracers are used to assess step length 

of movement (e.g. Habersack, 2001), proportion of the bed surface entrained (e.g. Laronne & 

Duncan, 1992), transport behaviour (e.g. Gottesfeld & Tunnicliffe, 2003) and transport rate 

(e.g. Ergenzinger & Conrady, 1982), or as an indicator of bed stability (e.g. Death & 

Winterbourn, 1994). Further they could facilitate the measurement of recolonisation periods 

of individual particles. 

Stones coated with ordinary paint or fluorescent dye placed on the riverbed are often 

employed by ecologists and hydrologists (Death & Winterbourn, 1994; Townsend, 

Scarsbrook & Doledec, 1997; Ferguson & Wathen, 1998; Death, 2002; Ergenzinger & de 

Jong, 2003; Death & Zimmermann, 2005), but they have the disadvantage of a low recovery 

rate due to burial (Table 4). To overcome this, metal bars (Laronne et al., 1992; Schmidt & 

Ergenzinger, 1992) or magnets (Hassan, Church & Schick, 1991; Laronne & Duncan, 1992; 

Bunte, 1996; Ferguson & Wathen, 1998) can be inserted into the particles and they are 

detected using a metal detector or a magnetometer respectively. Magnetic tracers usually 

Page 12 of 39

Freshwater Biology

Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review

have a larger detection range (McEwan, Habersack & Heald, 2001) than metal tracers. An 

easier but less durable alternative to the insertion of metal is the wrapping of stones with 

aluminium foil (Sear et al., 2003). The transport rate and transport behaviour of particles 

marked with magnets or stones containing magnetic minerals can be monitored with a bar 

equipped with electromagnetic coils across the stream (Ergenzinger, 1985; Carling et al., 

1998; Froehlich, 2003) or with a longitudinal line of “Bed Movement Detectors” (Gottesfeld 

& Tunnicliffe, 2003). The overpassing of a magnetic particle induces an electric signal which 

is stored with high temporal resolution. The calculation of bedload discharge is possible using 

dispersion models (Sear et al., 2000b). 

Marking of tracer particles has been further advanced via insertion of radio transmitters 

into a particle. A signal is transmitted either continuously, at a programmed interval or when 

the particle is turned 180o (Ergenzinger, Schmidt & Busskamp, 1989; Schmidt & Ergenzinger, 

1992; Busskamp & Hasholt, 1996; Habersack, 2001). The tagged stones can be tracked from 

the banks with a set of antennae but application is restricted to shallow water and low 

conductivity (Ergenzinger & de Jong, 2003). Battery capacity (size) is a trade-off between 

life span and lower size boundary of particles (Habersack, 2003). These tags enable the 

monitoring of step length and transport behaviour as well as initiation of motion. 

Radioactive tracers (e.g. 137Cs) are an alternative to tags because they do not change 

density or centre of gravity (e.g. Bartnik, Madeyski & Michalik, 1992). However, they are no 

longer widely applied due to environmental issues (Ergenzinger & de Jong, 2003). The 

employment of tracers of differing lithology from the natural substratum (Mosley, 1978; 

Kondolf & Matthews, 1986) provides an effective and easy measure for event-based 

distribution of transport length, although recovery rate is low. 

For the in situ marking of substratum particles Downes et al. (1998) and Matthaei, 

Peacock & Townsend (1999a) used chisels and drills with long drill bit extensions, but 

relocation is difficult and embeddedness may be disturbed during the marking process. Thus 

this method is more suitable for the qualitative measurement of entrainment. Barquin & 

Death (2006) used dyed quick curing concrete mix to mark embedded stones. 

Artificial stones provide an alternative to natural particles and also give the opportunity 

to examine the influence of shape on transport length (Schmidt & Ergenzinger, 1992). The 

use of cast aluminium forms avoids the insertion of metal bars in pebbles (Sear et al., 2003). 

The collection of complex information about particle transport is also possible with artificial 
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boulders like the DUMPLING (Ergenzinger & de Jong, 2003), although its size and weight 

restricts its application to bouldery streams. 

The measurement of bedload transport with tracers provides comparable results to 

direct measures but requires less effort and avoids large-scale intervention in the stream bed. 

For low transport rates, tracers are likely to be more accurate (Wilcock, 1997). However, the 

dominating influence of bed structure and channel morphology on the distribution of tracer 

stones and the weak relationship with stream power (Kondolf & Matthews, 1986; Hassan, 

Church & Ashworth, 1992) suggests that short-term studies with tracers are not sufficient to 

compute rates of bedload transport. In contrast, shorter-term studies are more suitable for 

investigating the movement of surface particles because the transport rate of tracer particles 

decreases due to vertical mixing (burial) and storage in less active zones of the system (e.g. 

floodplain, bars) (Ferguson et al., 2002). If particles have to be removed from the stream for 

marking, bed structures and imbrication are destroyed and tracer particles placed on the bed 

surface may not represent the size characteristics of the substratum (Downes et al., 1998; 

Biggs et al., 1999). Longer-term studies can account for this, but they do not provide 

information about the frequency and magnitude of single disturbance events. The subjective 

choice and the shape of particles, as well as their number, may bias the results of tracer 

experiments (Schmidt & Gintz, 1995; Duncan et al., 1999; Warburton & Demir, 2000; 

Ferguson & Hoey, 2002). 

Nevertheless, a stability index derived from tracer experiments showed a strong 

negative relationship with invertebrate diversity and periphyton biomass (Death & 

Winterbourn, 1995; Death, 2002; Death & Zimmermann, 2005) (Table 4). In situ marked 

stones were also used to identify stable stones that can serve as refugia during floods 

(Matthaei et al., 2000). They relate the shear forces to the local substratum and consequently 

give a better estimate of bed stability than unembedded tracers (Downes et al., 1998; 

Matthaei et al., 1999a). In combination with a non-invasive detection technique, in situ 

marked particles may be highly appropriate for ecological studies. Along with the objectives 

of a study, selection of an optimal tracer technique should consider representation of the 

substratum, tracer recoverability, longevity, durability, possibility of explicit identification of 

particles as well as labour and cost efficiency (Sear et al., 2000b). 

Bedload transport sampler and traps 

The rate of bedload transport can be assessed with samplers and traps at various scales 

(Table 5). The most common handheld bedload transport samplers are of the pressure-
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difference type (Helley-Smith-, VUV- and Arnhem sampler) with orifices up to 0.05 m2 

(Leopold, 1992; Hoey, Cudden & Shvidchenko, 2001; Hardardottir & Snorrason, 2003). 

Their sampling efficiency usually varies between 30% and 70%, but can be up to 100% 

(Helley-Smith sampler) (Gomez, 1991). A common constraint of these samplers is that the 

opening area needs calibration for hydraulic and substratum conditions (Gomez, 1991) but, 

much more critically, the sampling scheme should be sufficient to account for the cross-

sectional substratum variability of the reach and the temporal variability in bedload transport 

(Ergenzinger & de Jong, 2003). This requires adjustment of the sampling period and may 

result in large sampling efforts in wide rivers. Therefore, predictions of bedload transport 

based on sampler measurements are often not very accurate (uncertainty of ±50%) (Wilcock, 

2001). In conditions encountered in mountain streams (e.g. local high flow velocities and 

high surface roughness) bedload transport samplers are less applicable (Mizuyama, Fujita & 

Nonaka, 2003). Here portable net traps fixed to platforms on the stream bed may be used, 

delivering similar results to pit traps (Wilcock, 2001; Bunte & Abt, 2003; Bunte et al., 2004). 

Bedload samplers are not frequently employed by stream ecologists perhaps because of the 

mentioned constraints and inaccuracy. However, for small-scale, event-based studies they 

constitute a potentially valid option for direct measurement of bedload transport rate. 

Slot traps of various dimensions, inserted into the river bed, are used in many parts of 

the world (Salehi, Lagace & Pesant, 1997; Martin-Vide et al., 1999; Hassan & Church, 2001; 

Sear et al., 2003; Bond, 2004). They range from small sized pit traps, without continuous 

measurement, to Birkbeck samplers and large, stream-wide constructions for continuous 

monitoring. The latter is achieved with the employment of a weighing device (pressure 

cushion, load cell) below the sampling box or outside the channel (vortex tube, pump, 

conveyor belt) (Gomez, 1991; Sear et al., 2000a; Ergenzinger & de Jong, 2003; Sear, 2003). 

Load cell systems are more reliable than pressure cushion devices because they are less 

susceptible to damage (e.g. puncture of pressure pillows) (Lewis, 1991). Smaller pit traps 

may fill rapidly during large events but are generally more accurate than handheld bedload 

transport samplers (Wilcock, 2001). Sampling efficiency for pit traps is up to 100%, 

decreasing with increasing fill (Laronne et al., 2003). In particular at base flow, bedload 

transport traps may also sample suspended sediments (Batalla, 1997). The installation and 

maintenance of a bedload trap is expensive and involves a serious disturbance of the stream 

bed and biota. For this reason, bedload traps have not been used for investigations of benthic 

biota but for long-term projects they offer a useful tool for the assessment of ecologically 

relevant bedload discharge. As an alternative, monitoring of sediment volume accumulated in 
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natural traps (basins), reservoirs or retention and diversion devices provides an opportunity to 

assess bedload transport rate, but calibration to exclude suspended sediments is difficult 

(Gomez, 1991). 

Acoustic sensors 

Acoustic sensors can be used to assess bedload transport intensity and the onset and cessation 

of movement (Ergenzinger & de Jong, 2003). In addition, estimates of transport rate using 

acoustic energy and estimates of transported particle size using the emitted frequency can be 

obtained (Bogen & Moen, 2003; Downing et al., 2003; Froehlich, 2003; Mizuyama et al., 

2003). Hydrophones must be calibrated against actual bedload samples at each site. The 

sensor consists of a plate fixed horizontally on the bed (Bogen & Moen, 2003), a vertical 

pressure plate (Downing et al., 2003) or horizontal steel pipes across the stream bed 

(Froehlich, 2003; Mizuyama et al., 2003). Calibration limits the application at numerous sites, 

but the accuracy can be similar to a bedload trap. Acoustic Doppler Current Profiling (ADCP) 

allows the combined measurement of multi dimensional flow and velocity of bedload and 

suspended load (Rennie & Millar, 2004). Limitations of this technique include problems with 

the differentiation between near-bed suspension, bedload and fine grained bottom sediments 

as well as varying sensitivity to different particle sizes (Kostaschuk et al., 2005). 

Other sensors 

Richardson, Benson & Carling (2003) presented an electronic sensor that allows detection of 

the momentum of impacting particles in bedrock channels. It gives a relative measure of 

bedload transport but needs to be calibrated. The latter can create some difficulties because 

the sensor measures a combination of grain mass and speed. 

The piezoelectric bedload impact sensor employed by Rickenmann & McArdell (2007) 

can measure impacts of transported grains larger than 10 – 30 mm. These sensors are placed 

in an array over the whole stream width in a concrete bar. The measure is a reliable and 

continuous indicator of total bedload transport, but it needs to be calibrated and has limited 

accuracy for single events or small bedload volumes. Further it gives no information about 

the grain size distribution of the overpassing sediments (Rickenmann & McArdell, 2007). 

Bedload transport formulae 

Bedload transport formulae (e.g. Schoklitsch-type equation (5)) are generally based on four 

principal approaches: shear stress, stream discharge, stream power and a stochastic function 

for sediment transport (Gomez & Church, 1989).  
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qb = X’ Sf (q – qcr)         (5) 

In this example, bedload discharge qb depends on excess water discharge and a 

sediment coefficient X’. Most bedload transport formulae originate from physical principles 

but their precision has been improved by the use of empirical datasets from flumes and 

streams. The formulae are consistent in that they employ in most instances the same 

hydraulic parameters (energy gradient, flow velocity, depth and discharge) which are in part 

intercorrelated (Gomez & Church, 1989; Martin & Church, 2000). Most formulae are well 

suited and parameterised for the dataset of their development, but fail when applied to other 

conditions (Knighton, 2008). They are based on limited basic assumptions which vary 

between streams and even within streams (e.g. selective entrainment). Characteristics like 

armouring, exposure to flow, equal mobility, variable sediment supply and pulsing cannot be 

fully accounted for, although some approaches try to incorporate these points (Parker, 1990; 

Duan & Scott, 2007; Thompson & Croke, 2008). Furthermore, the spatial variability within a 

stream is ignored because of the one-dimensional nature of the formulae (Hoey et al., 2001; 

Ferguson, 2003; Martin & Ham, 2005). The result of comparative studies with bedload 

samplers/ traps (Gomez & Church, 1989; Batalla, 1997; Martin-Vide et al., 1999; Habersack 

& Laronne, 2002; Barry, 2004) and morphologic budgeting (Martin & Ham, 2005) show 

clearly that bedload transport formulae perform inconsistently (but see Bartnik et al., 1992). 

Thus, bedload transport formulae need to be carefully selected according to the conditions for 

which they were developed, for instance turbulent and shallow mountain streams require 

other types of models than gravel-bed rivers (Biggs et al., 2001; Mizuyama et al., 2003; 

Ancey et al., 2008). Additionally, empirical parameters and the entrainment threshold have to 

be determined to suit a new dataset, which is a difficult task (Wilcock, 2001; Habersack & 

Laronne, 2002). Thus the application of direct measurements of bedload transport is 

preferable to the use of bedload transport formulae (Gomez, 1991; Laronne et al., 1992). 

 

Abrasion by suspended sediments 

Abrasion is an often neglected form of disturbance which can affect benthic flora and fauna. 

At normal flows the stream biota may be subjected to constant in situ abrasion by small 

suspended particles, which may represent a significant disturbance at higher discharges 

(Biggs, 1996; Peterson, 1996). It is unclear if sandblasting affects invertebrates (Rosenberg & 

Wiens, 1978; Culp, Wrona & Davies, 1986; Bond & Downes, 2003) but the effect on benthic 

algae is clearly recognised (Biggs et al., 1999; Webb et al., 2006). 
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The exposure of natural or artificial tracers to abrasion is an obvious opportunity for 

quantification (Table 6). The use of natural rocks that are cut in cubes or artificial blocks 

improves the visual monitoring of abrasion because the loss of edges and corners is simply 

detected. Furthermore, impact marks on the cube faces are subject to easy distinction and aide 

the interpretation of bedload moving events (Brewer, Leeks & Lewin, 1992). Blocks that are 

of the same lithology as the river sediments have the advantage that they provide a better 

estimation of the actual abrasion in the channel. However, for the quantification of the impact 

on biota a measure of relative abrasion is sufficient. Thus ecologists prefer to use artificial 

tracers, like autoclaved lightweight aerated concrete blocks (Webb et al., 2006). The latter 

have standardised material properties and abrade consistently proportional to the physical 

work performed on their surface. Moreover the abrasion rate is high enough to allow short 

deployment times (e.g. 2 months) which minimises mass loss by dissolution. Abrasion blocks 

need to be protected from the impact of bedload transport to gain a pure measure of abrasion 

by suspended particles. There is also the choice between blocks fixed on the stream bed or on 

bedrock, semi-mobile tethered blocks as well as loose tracer particles of known weight and 

size (Stott & Sawyer, 2000). For measurements relevant to stream invertebrates or periphyton 

it is preferable to place the blocks on the stream bed. Although fixed or tethered blocks may 

split and get lost or buried by sediments, the recovery rate can be high (Brewer et al., 1992). 

These methods do not allow distinction between effects of sandblasting, overpassing bed 

materials and the physical impingement of fast flowing water. However, the practical 

consequences for ecologists are small because, in the field, biota are usually exposed to a 

combination of these effects (Webb et al., 2006). 

Abrasion coefficients derived from laboratory experiments are an easy alternative to 

field measurements but they generally underestimate the actual abrasion in rivers (Lewin & 

Brewer, 2002). Sklar & Dietrich (2004) presented a model to predict bedrock abrasion by 

saltating particles but it has not yet been applied in context with stream biota. 

 

Descriptive surveys of substratum stability and multivariate approaches 

Pfankuch Stability Index 

The Pfankuch Stability Index is a qualitative measure that describes the probability of 

occurrence of substratum-moving discharges (Pfankuch, 1975). It consists of 15 variables 

representing properties of the upper and lower banks and the stream bed. Despite its 

subjectivity it shows a strong positive relation with the entrainment of painted stones 
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(Townsend et al., 1997), but not when the painted stones are used as an indicator of tractive 

force over time (Death & Winterbourn, 1994). If just the stream bottom component of the 

Pfankuch Index is employed, the relationship with other stability measures is considerably 

higher (Death & Winterbourn, 1994; McIntosh, 2000) and the assessment of stability at finer 

spatial scales might be possible (Winterbourn & Collier, 1987). 

Descriptive approaches for the assessment of stream bed stability provide an easily 

applicable tool which has been widely exploited for investigations of biota in streams. Their 

major problem is the propensity to be observer-biased (Duncan et al., 1999). Additionally, 

large temporal variation in scores can occur between surveys of the same reach by the same 

observer (A. C. Schwendel, unpublished data). Nevertheless, relations between bed stability 

assessed with the stream bed component of the Pfankuch Index and biological data have been 

established (Table 7). 

Multivariate approaches 

Approaches that combine more than one measure of bed stability can have a stronger 

relationship with biological data because they can incorporate different aspects of substratum 

stability. Death & Winterbourn (1994) showed that a multivariate instability score consisting 

of hydraulic parameters (patch-scale), the movement of painted stones, water temperature and 

the bottom component of the Pfankuch index (reach-scale) had a stronger positive linear 

relationship with invertebrate species richness than with any of the constituent single 

variables. 

 

Conclusions 

The composition of benthic communities is a function of habitat and biotic interactions. 

Habitat stability in rivers is primarily determined by the forces of flowing water exerted on 

biota and substratum. Hence measurement of shear stress and substratum stability can 

indicate the distribution of benthic stream organisms, but they differ in precision and the 

aspect of bed stability they describe. Clearly there is no single technique suitable for all 

applications. Thus the selection of an appropriate method is subject to: (1) targeted fauna 

(mobility and range of activity), (2) spatial and (3) temporal scale of investigation (flood 

event-based or long-term), (4) hydraulic and (5) substratum conditions, and (6) research 

question of the study (e.g. range of flow, aspect of bed stability). 
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Most of the methods presented have been developed for research into stream hydraulics 

and fluvial geomorphology. Despite recent technological advances and development of new 

techniques only a few of them have been applied in ecological studies. Given the importance 

of bed stability for the biota of many streams and rivers and the multitude of ways to 

characterise that stability, we would like to encourage stream ecologists to consider also the 

potential of alternative techniques highlighted in this review for examining the links between 

stream stability and biota. 
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 Table 1: Methods for the assessment of shear stress (for annotations see Appendix B) 

Method Scale Constraints  Interference 
with 
substratum 

Accuracy/ Relation to 
biological data 

Du Boys 
equation 

reach uniform 
flow, W/h > 
20 

low 
(measurement 
of parameters) 

overestimation of local shear 
stress (Robert, 1990) but 
underestimation of mean shear 
stress (Carson & Griffiths, 
1987), recommended to assess 
the spatial distribution of 
invertebrates (Statzner et al., 
1988) 

DuBoys 
equation 
(using h and 
Sb) 

patch uniform 
flow 

low 
(measurement 
of parameters) 

underestimation of local shear 
stress (Lorang & Hauer, 2003) 

FST- 
hemispheres 

patch to 
reach, 
short-
term 

usually 
normal flow 
conditions 

low related to invertebrate 
distribution (Dittrich & 
Schmedtje, 1995; Merigoux & 
Doledec, 2004), negative linear 
relationship with invertebrate 
taxon richness (Merigoux & 
Doledec, 2004) and with 
mussel density (Hardison & 
Layzer, 2001) 

Point near-
bed flow 
velocity 

patch h/D84>3 low related to invertebrate 
distribution (Effenberger et al., 
2006) 

Depth 
averaged 
near-bed 
flow 
velocity 

patch simple flow 
geometry, 
logarithmic 
velocity 
profile 

low 3 times more accurate than 
point measurement (Wilcock, 
1996) 

Velocity 
profile 

patch simple flow 
geometry, 
logarithmic 
velocity 
profile 

low profiles least accurate 
compared to point and depth-
averaged velocity, but no 
knowledge of bed roughness 
necessary (Wilcock, 1996) 

 

Page 32 of 39

Freshwater Biology

Freshwater Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Copy for Review

Table 2: Methods for the assessment of critical shear stress and flow competence (for 

annotations see Appendix B) 

 

Method Scale Constraints Interference 
with 
substratum 

Accuracy/ Relation to 
biological data 

Critical shear stress 
τcrit ≈ D (Lane, 
1955) 

reach h >> D50, Sw < 
0.01, uniform 
flow, 
unarmoured bed 

low 
(measurement 
of D) 

weak relationship with 
other measurers of bed 
stability or bryophyte 
cover (Death & 
Winterbourn, 1994; 
Duncan et al., 1999), 
linked to bryophyte 
(Muotka & Virtanen, 
1995) and invertebrate 
distribution (Cobb et al., 
1992), negative linear to 
number of invertebrates 
(Death & Winterbourn, 
1995) 

τcrit = θcrit*(γs - 
γf)*Di 

patch uniform flow, 
uniform bed, low 
h/Di, low S 

low 
(measurement 
of parameters) 

depending on choice of 
θcrit 

τcrit = θcrit*(γs - 
γf)* D50

c *Di
d 

patch uniform flow, 
low h/Di, low S 

low 
(measurement 
of parameters) 

depending on choice of c, 
d, θcrit 

Combination 
of Shields 
equation and 
DuBoys 
equation (+ 
corrections 
(Duncan et al., 
1999)) 

reach uniform flow, 
unarmoured bed  

D, R, S related to actual 
entrainment (Milan et al., 
2001), negative linear 
relationship with 
bryophyte cover (Duncan 

et al., 1999), related to 
periphyton biomass 
(Biggs et al., 1999) 

τcrit = a * Db patch site specific low 
(measurement 
of D) 

depending on parameters 
a, b 

Spring balance patch subjectivity of 
particle choice 

high (Downes et al., 1997) 
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Table 3: Methods for the assessment of erosion and deposition 

Method Scale Constraints Interference 
with 
substratum 

Accuracy/ Relation to 
biological data 

Scour chains patch/ reach, 
event-based 

substratum 
< boulders 

intermediate 
during 
installation 

related to distribution 
of algae (Matthaei et 

al., 2003) and 
invertebrate taxa 
(Palmer et al., 1992; 
Effenberger et al., 
2006) 

Scour plates patch, event-
based 

substratum 
< boulders 

high related to vertical 
invertebrate 
distribution (Palmer et 

al., 1992) 
Dyed sand 
columns/ 
painted gravel 

patch, event-
based 

substratum 
size 

high related to vertical 
invertebrate 
distribution (Palmer et 

al., 1992) 
Pressure 
pillows 

patch, 
continuous 

substratum 
< boulders 

high during 
installation 

(Kurashige, 2002) 

Morphometric 
budgeting 

reach, event-
based 

gravel/ 
cobble 
substratum 

low accuracy depends on 
surface roughness 
(Brasington et al., 
2000) 
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Table 4: Methods for reach-scale tracking of tracer particles 

Method Constraints detection 
depth 

recovery 
rate 

Relation to biological data 
and comments 

Tracking of initially unembedded particles 
painted tracer 
(visual) 

armour layer, 
burial 

surface 15-60% negative with periphyton 
biomass (Death & 
Zimmermann, 2005), 
negative linear with 
invertebrate species 
number and species 
richness (Death & 
Winterbourn, 1995; Death, 
2002; Death & 
Zimmermann, 2005), 
quadratic with invertebrate 
taxon number ( Townsend 

et al., 1997) 
metal tracer 
(passive) 

armour layer, 
particle size 

0.5-1 m 50-90%  

stones wrapped 
in aluminium 
foil (passive) 

armour layer 0.25 m   

magnetic tracer 
(passive) 

armour layer, 
particle size 

0.5-1 m, 
usually 
higher 
than with 
metal 
tracer 

50-90%  

transmitters 
(active) 

armour layer, 
particle size, 
battery*, low 
conductivity 

shallow 
water 

up to 
100% 

* life span: a few weeks to 
10 months (size 0.01 m to 
0.08 m respectively) 

radioactive 
tracer (passive) 

armour layer, 
environmental 
issues 

 ca. 5%  

different 
lithology 
(visual) 

armour, burial surface 5-30%  

artificial tracer 
(visual/ 
passive) 

armour layer, 
representativen
ess of 
substratum 

variable ca. 35%  

DUMPLING 
(active) 

size (0.3 m), 
weight (37 kg) 

 100%  

Tracking of initially embedded particles 
chiselled stones 
(visual) 

particle choice low  low  

dyed quick 
concrete mix 
(visual) 

particle choice surface  distribution of 
invertebrates (Barquin & 
Death, 2006) 
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Table 5: Methods for the assessment of bedload transport 

 

Method Scale Constraints Interference 
with 
substratum 

Accuracy/ Relation 
to biological data 

pressure-
difference 
sampler 

patch, short-
term 

orifice area (up 
to 0.05 m2), 
upscaling to 
stream width 

low sampling efficiency 
usually 30 – 70%, 
can reach up to 
100%, small volume 

Birkbeck slot 
sampler 

patch/ reach slot width, 
upscaling to 
stream width 

high for 
installation 

continuous during 
smaller floods 

sediment trap cross-
section, 
continuous 

 high for 
installation 

sampling efficiency 
up to 100% 

acoustic 
sensors 

patch/ reach calibration low – high for 
installation 

comparable accuracy 
as bedload traps 
(Downing et al., 
2003) 

ADCP patch/ reach sandy 
substratum, 
high suspended 
load 

non  

electronic 
momentum 
sensor 

patch calibration low measures a 
combination of 
particle size and 
speed ( Richardson et 

al., 2003) 
piezoelectric 
sensors 

reach, long-
term 

calibration low 
(installation) 

limited accuracy for 
single events 
(Rickenmann & 
McArdell, 2007) 

bedload 
transport 
formulae 

reach calibration site 
specific 

low 
(measurement 
of parameters) 

inaccurate for general 
application 
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Table 6: Methods for the assessment of abrasion by suspended sediments 

Method Scale Constraints Interference 
with 
substratum 

Accuracy/ Relation to 
biological data 

Stone blocks patch absolute low actual abrasion of sediment 
Artificial 
blocks 

patch/ 
months 

dissolution, 
high 
bedload 
transport 

low only relative measurement 

Abrasion 
coefficients 

reach/ 
patch 

calibration none underestimation of actual 
abrasion (Lewin & Brewer, 
2002) 

 

 

 

 

Table 7: Descriptive surveys for the estimation of bed stability on a reach-scale 

Method Constraints Interference 
with 
substratum 

Accuracy/ Relation to biological 
data 

Pfankuch Index subjectivity of 
perception 

none related to other measures of bed 
stability, negative linear relationship 
with invertebrate taxon number 
(Townsend et al., 1997) 

Pfankuch Index 
bottom 
component 

subjectivity of 
perception 

none positively related to other measures 
of bed stability (Death & 
Winterbourn, 1994), negative linear 
relationship with bryophyte cover 
(Suren, 1996; Duncan et al., 1999), 
negative linear relation to 
invertebrate species richness, 
number and density (Death & 
Winterbourn, 1995; Death, 2002) 
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Appendix A: Definitions 

Armour layer Coarse surface layer in streams that inhibits the entrainment of 

underlying finer material 

Bed roughness Relief of roughness elements on the channel boundary, normally a 

function of grain size and flow depth 

Energy gradient Difference in potential and kinetic energy per horizontal distance 

between two points in a stream 

Flow competence Ability of a stream velocity to move particles of a particular size as 

bedload 

Imbrication  Overlapping and interlocking of particles 

Incipient motion Beginning of (grain) movement 

Laser altimetry Approach to obtain measurements of surface elevation with laser 

scanning techniques 

Pebble cluster Feature developed by stream flow over alluvial beds consisting of a 

group of particles 

Photogrammetry Approach to obtain measurements by means of photography 

Reynolds number Nondimensional parameter of fluid motion which determines the 

extent to which viscosity modifies flow 

Stream power Index for the erosive capacity of stream, defined as energy dissipation 

per unit area, stream length or mass of water. 

Tacheometry Survey technique that produces rapid measurements of direction, 

elevation and distance using a kind of theodolite 

Thalweg  Deepest continuous longitudinal line along a river 
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Appendix B: Symbol annotation 

τo   mean boundary shear stress (N m-2) 

τcrit  critical shear stress at incipient motion (N m-2) 

ρf  density of the fluid (for pure water approx. 1000 kg m-3) 

g  gravity acceleration (9.81 m s-2) 

R  Hydraulic radius (= A P-1) (m) 

A  cross-sectional area (m2) 

P  Wetted Perimeter at a cross-section (m) 

Sf  Friction slope (dimensionless) 

Sw  Slope of water surface (m m-1) 

Sb  Slope of stream bed surface (m m-1) 

h  water depth (m) 

D50  substratum grain size for which 50% are finer (mm) 

D84  substratum grain size for which 84% are finer (mm) 

Di  substratum grain size for which i% are finer (mm) 

D  substratum grain size (mm) 

γ  specific weight (= ρ g) (kg m-2 s-2) 

s  sediment 

f  fluid 

θcrit  Shields coefficient or dimensionless critical shear stress 

v  flow velocity (m s-1) 

W  stream width (m) 

Re  Reynolds number 

a, b, c, d empirical factors in entrainment formulae 

qb  bedload discharge 

q  water discharge (m3 s-1) 

qcr  critical discharge (m3 s-1) 

X’  sediment coefficient 
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