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Abstract

Context Recent research suggests that novel geodi-

versity data on landforms, hydrology and surface

materials can improve biodiversity models at the

landscape scale by quantifying abiotic variability

more effectively than commonly used measures of

spatial heterogeneity. However, few studies consider

whether these variables can account for, and improve

our understanding of, species’ distributions.

Objectives Assess the role of geodiversity compo-

nents as macro-scale controls of plant species’ distri-

butions in a montane landscape.

Methods We used an innovative approach to quan-

tifying a landscape, creating an ecologically mean-

ingful geodiversity dataset that accounted for

hydrology, morphometry (landforms derived from

geomorphometric techniques), and soil parent mate-

rial (data from expert sources). We compared models

with geodiversity to those just using topographic

metrics (e.g. slope and elevation) and climate data.

Species distribution models (SDMs) were produced

for ‘rare’ (N = 76) and ‘common’ (N = 505) plant

species at 1 km2 resolution for the Cairngorms

National Park, Scotland.

Results The addition of automatically produced

landform geodiversity data and hydrological features

to a basic SDM (climate, elevation, and slope) resulted

in a significant improvement in model fit across all

common species’ distribution models. Adding further

geodiversity data on surface materials resulted in a less

consistent statistical improvement, but added consid-

erable conceptual value to many individual rare and

common SDMs.

Conclusions The geodiversity data used here helped

us capture the abiotic environment’s heterogeneity

and allowed for explicit links between the geophysical

landscape and species’ ecology. It is encouraging that

relatively simple and easily produced geodiversity

data have the potential to improve SDMs. Our findings

have important implications for applied conservation

and support the need to consider geodiversity in

management.

Keywords Biodiversity � Conserving Nature’s

Stage � Geodiversity � Geomorphometry �
Heterogeneity � Landscape � Scotland � Species

distribution modelling
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Introduction

An intimate relationship exists between living things

and the geophysical land surface (Lawler et al. 2015),

which appears to be more pronounced at the landscape

scale than at larger geographic extents (Hjort et al.

2012; Stein et al. 2014; Bailey et al. 2017; Tukiainen

et al. 2017a). Capturing this geophysical diversity, or

‘geodiversity’, is important for biodiversity conserva-

tion because geodiverse areas may facilitate species’

persistence and adaptation to climate change (Ander-

son and Ferree 2010; Albano 2015; Ordonez et al.

2016; Magness et al. 2018; Suggitt et al. 2018).

Developing more ecologically meaningful ways to

quantify geodiversity is therefore essential to help

inform conservation planning and adaptation strate-

gies for the future (e.g. Hagerman et al. 2010;

Anderson et al. 2014; Theobald et al. 2015).

Macroecological work has tended to be conducted

at larger extents than that of the landscape, and either

largely focus on species richness, which itself tells us

mainly about common species (Gaston 2010), or on

species distribution modelling (SDM) using climatic

envelopes. Such SDMs suffer from the unrealistic

assumption that species’ realized niches are the same

as their fundamental niches (Kearney et al. 2010) and,

despite recent efforts to include relatively crude

geophysical data at broad scales (Title and Bemmels

2017), studies using such data in SDMs at landscape

scales are limited. Meanwhile, ecological studies

using small plots across a limited extent can be too

autecological, missing landscape-scale drivers of

observed biodiversity and species’ distributions (Boyd

et al. 2013). To bridge this gap, we need predictors that

are capable of capturing ecologically relevant geo-

physical characteristics of the landscape.

This gap has often been addressed using measures

of spatial environmental heterogeneity, which

describe the diversity of the physical environment in

a very coarse way. The relationship between environ-

mental heterogeneity and both biodiversity and

species’ distributions is well documented, especially

at the landscape scale where climate tends to be less

variable through space than it would be across larger

areas (Stein et al. 2014). Heterogeneity metrics are

varied, but most commonly include coarse topo-

graphic measures such as openness, and mean and

range of elevation and slope. Although their value in

macroecology has been shown repeatedly across taxa

and scales (Pausas et al. 2003; Dufour et al. 2006;

Jeremy and Lundholm 2009; Parks and Mulligan

2010; Stein 2015), these relatively crude measures

may oversimplify the physical environment, thus

precluding a more advanced ecological understanding

of relationships that have been known for some time

(Hjort et al. 2012; Lawler et al. 2015).

‘Geodiversity’ may be defined as the natural range

of hydrological, geomorphological, and geological

features, comprising surface and sub-surface materials

and landforms (Hjort et al. 2012; Gray 2013). The

body of research on geodiversity–biodiversity rela-

tionships has expanded in recent years (Gray 2013;

Lawler et al. 2015). These works share a common goal

to more effectively link the living and non-living

constituents of the landscape and, in doing so, adhere

closely to original definitions of the ‘ecosystem’

(Tansley 1935; Willis 1997). In capturing geodiver-

sity, we should be able to produce a more nuanced

view of the landscape and further our understanding

of, and ability to manage, biodiversity. In Finland,

diversity metrics calculated from expertly mapped

geodiversity data (Hjort et al. 2012) have demon-

strated biodiversity–geodiversity links at the land-

scape scale. Meanwhile, similar patterns have been

reported at multiple scales across Great Britain (e.g.

grain sizes of 1 km2 and 100 km2 and several extents

of circular areas with diameters between 25 km and

250 km), where geomorphometric methods (auto-

mated landform mapping using digital elevation

models) were used to quantify landform coverage in

relation to biodiversity (Bailey et al. 2017).

Geophysical features, or ‘geofeatures’ (e.g. geo-

logical types, landforms and hydrological features),

relating to both landform morphology (i.e. the geom-

etry of the landscape) and surface materials, are

directly relevant to species’ distributions and biodi-

versity through their implicit links to abiotic processes

(e.g. disturbance, weathering, fine-scale hydrology),

properties (e.g. nutrient levels), and settings (e.g.

microclimate, connectivity from rivers). These links

are fundamental to ecological theories surrounding the

niche (Peterson et al. 2011), including biotic hetero-

geneity (Tuanmu and Jetz 2015), and local resource

availability (Dufour et al. 2006; Viles et al. 2008;

Bétard 2013; le Roux et al. 2013; Hjort et al. 2015).

Automatically mapping landforms across large

extents for biodiversity modelling is now relatively

straightforward using geomorphometric techniques
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(e.g. Bailey et al. 2017). However, using only shape

overlooks the importance of surface materials, which

implicitly capture important ecology-relevant infor-

mation because of the genesis (e.g. glacial; fluvial) of a

landform. Expertly mapped, explicit geomorphologi-

cal features capture this in a way that DEM-based

landform mapping does not, but expert geomorpho-

logical maps (e.g. in Hjort and Luoto 2010) are time-

consuming to produce and exist in very few places

worldwide. Combining automated landform maps

with existing, widely available surface material maps

should produce more ecologically meaningful data

than either in isolation. This technique is extendable

across large areas, without the need for extensive field

mapping. However, such semi-automated mapping

has not yet been done in biodiversity science, though

some research in geomorphology points to the possi-

bilities (Anders et al. 2009; Seijmonsbergen et al.

2014).

We therefore aim to test the ability of geodiversity

variables to improve models of individual plant

species’ distributions across a sensitive upland land-

scape—the Cairngorms National Park, Scotland, UK.

As part of a macroecological approach, we first

consider a traditional SDM built on climate and

topography data, and then add various geodiversity

data, including the combined landform-parent mate-

rial data to account for source and mineralogy. We

determine the explanatory power of the geodiversity

variables over and above commonly used, coarse

measures of environmental heterogeneity. The Cairn-

gorms provide a very suitable place in which to

examine these techniques and relationships at the

landscape scale, especially given the availability of a

recently compiled database of rare species (broadly

defined). This allows us to develop an improved

understanding of rare and common species’ relation-

ships with geodiversity at the landscape scale.

Methods

Study area

The Cairngorms National Park, Scotland, is the largest

(area = 4528 km2) and highest national park in Great

Britain (Fig. 1a; also see Appendix S1 in Supporting

Information). It is valuable for nature conservation

(Nethersole-Thompson et al. 1974; Gimingham 2002;

Shaw and Thompson 2006) and about half of its area is

designated as internationally important under Euro-

pean law (Amphlett 2012). Both the sensitivity of this

landscape and the value of its geoheritage have been

recognised for some time (Gordon et al. 1998, 2001;

Haynes et al. 1998; Gordon and Wignall 2006;

Kirkbride and Gordon 2010). The central mountains

form a number of granite plateaus, with deep passes in

between, whilst in the wider national park, Dalradian

and Devonian sedimentary rocks define the underlying

geology (Gordon and Wignall 2006). Soils are derived

from underlying solid geology and superficial deposits

(Bruneau 2006). This results in a complex abiotic

environment, exhibiting a substantial range in eleva-

tion (mean elevation of 533 m; min = 97 m; max =

1309 m) and slope (mean = 11�; min = 0�; max =

72�) (statistics derived from a 10 9 10 m DEM).

Landforms that largely pre-date the last glaciation

(Late Devensian/Weichselian) are extensive and

include palaeosurfaces and breaks of slope, topo-

graphic basins, shallow plateau valleys, domes and

tors (Hall et al. 2013). Glacial landforms are marked

by sudden breaks from the gentler pre-glacial moun-

tain forms, and include corries, glacial troughs and

glacially breached watersheds (Sugden 1968; Gordon

and Sutherland 1993). Periglacial features such as

solifluction lobes and boulder fields occur on upper

slopes, and moraines and glaciofluvial deposits on

lower ground in the valleys and straths (large valleys)

(Kirkbride and Gordon 2010). These create a geodi-

verse landscape.

Windy, cool, humid conditions dominate the

Cairngorms, with higher areas experiencing weather

and climate similar to those of the alpine semi-tundra

(McClatchey 1996; Gordon et al. 1998; Gimingham

2002). Mean precipitation ranges from 800 mm to

1500 mm per year and is broadly linked to altitude.

However, the eastern areas are typically drier because

of the predominant westerly direction of approach of

Scotland’s weather, meaning that much precipitation

falls when weather systems encounter the western

mountains. Alpine, low alpine, and sub-alpine habitats

exist at higher elevations. More widely, heathland

(heather moorland) and native pinewoods dominate

the area. Snow-bed communities are relatively com-

mon and include rare and specialized liverworts and

mosses, for example, especially on the high plateaus.

123

Landscape Ecol



Data

All predictor sets and subsets used in the modelling are

summarised in Table 1. Except for geomorphometric

analyses (see below), all data for the Cairngorms

National Park study area were processed and joined to

1 km2 British National Grid (BNG) cells (n = 4774)

using ArcGIS 10.3 and subsequently processed and

analysed in R (R Core Team 2018). Grid cells

with\ 75% land area in the national park boundary

or those that had no species occurrence data were

removed.

Fig. 1 a Elevation map of

the Cairngorms National

Park (CNP) with an inset

showing CNP shaded grey

within Scotland; b A 3D

visualisation of the

geomorphometric landform

classification (produced

using r.geomorphon in

GRASS GIS 7.1) produced

in ArcScene 10.3: these data

were aggregated to the

1 km2 grid used in this study

(see Appendix S2b for

aggregated map examples).

b is centred over Ben

Macdui

(altitude = 1309 m—the

highest point in the

Cairngorms), which is

shown with the yellow circle

in the centre of the image.

Rivers and lakes are shown

as white lines and polygons,

respectively. The map in

a uses a 10 m elevation

raster, derived from

Intermap Technologies

NEXTMap (accessed via

NERC Earth Observation

Data Centre; Table 1),

which was aggregated to the

1 km2 resolution for

analyses
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Climate and topography data

The mean and standard deviation in elevation were

calculated for each grid cell from the NEXTMap

5 9 5 m digital elevation model, which we resampled

to 10 9 10 m to reduce noise (Table 1). The mean of

CHELSA’s (Karger et al. 2017) bioclimatic variables

1 (bio1; annual mean temperature) and 12 (bio12;

annual precipitation), with an original resolution of 30

arc-seconds, were calculated for each 1 km2 grid cell.

Geodiversity data

We compiled geodiversity data (landforms, parent

material, and hydrology) from existing datasets. River

and lakes data were obtained under open license from

the Ordnance Survey’s ‘OpenData’ service (Appendix

S2a). We checked these data against 1:50,000 OS base

maps and added smaller rivers where appropriate (by

digitisation in ArcMap). Total river length and lake

area were calculated for each 1 km2 grid cell.

Using the 1:50,000 British Geological Survey

(BGS) Soil-Parent Material Database, under academic

license, two key datasets were extracted: source

(relates to material genesis and rock type, e.g.

sedimentary alluvial, sedimentary glaciolacustrine,

igneous intrusive; number of classes = 28) and min-

eralogy (e.g. basic, acid, calcium carbonate; number of

classes = 18).

The geology of the whole area has been systemat-

ically mapped by the British Geological Survey, but

since geomorphological mapping is only available for

the core mountain area (Kirkbride and Gordon 2010),

a geomorphometric approach was adopted to cate-

gorise landforms across the whole of the national park.

We produced morphological landform coverage data

Table 1 Details of the variables within each predictor set

Predictor class [Category] Variables Original

resolution or

map scale

Value per

1 9 1 km grid

cell

Source

Climate Bio1 (annual mean temperature) and

Bio12 (annual precipitation)

30 arc seconds Mean CHELSA

Topography Elevation 10 m Mean and SD NEXTMap data (Intermap via

NEODC)

Slope 10 m Mean and SD NEXTMap data (Intermap via

NEODC)

Geodiversity

components

(GDCs)

[Landforms] Ridges, slopes, spurs,

peaks, pits, hollows, valleys, and flat

areas

10 m Areal

coverage

Derived from NEXTMap data

(Intermap via NEODC) in GRASS

GIS 7.1a

[Hydrology] River length 1:50,000 Total length OS Strategi via Edina Digimap

[Hydrology] Lake area 1:50,000 Areal

coverage

OS Strategi via Edina Digimap

[Materials] Parent material source 1:50,000 Areal

coverage

British Geological Survey (BGS)

under Academic License

[Materials] Mineralogy 1:50,000 Areal

coverage

British Geological Survey (BGS)

under Academic License

[Combined] Parent material

source 9 landforms

See above Areal

coverage

See above

[Combined] Mineralogy 9 landforms See above Areal

coverage

See above

Italicised content = data produced by combining other predictors. The predictors used in each model are detailed in Table 2

OS Ordnance Survey, SD standard deviation

CHELSA (http://chelsa-climate.org/bioclim/) (Karger et al. 2017); Intermap (www.intermap.com); NEODC = National Environment

Research Council (United Kingdom) Earth Observation Data Centre (www.neodc.nerc.ac.uk)
aJasiewicz and Stepinski (2013)
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using geomorphometry. Specifically, we used the

r.geomorphon algorithm developed by Jasiewicz

and Stepinski (2013), in GRASS GIS 7.1 (GRASS

Development Team 2018), which uses relational

geometry to define a grid cell as belonging to a

particular landform class. Jasiewicz and Stepinski’s

landform definitions (also see their Fig. 3, p. 150)

were maintained in our study and the following

landform features were mapped (also see our Fig. 1b

and Appendix S2b): peak (slope declining away from

focal grid cell in all directions), ridge (slope declining

on either side), shoulder (a declining slope leading

from an area of flat ground), spur (a ridge oriented in a

downward direction from the top of a slope), slope

(consistently inclining or declining slope), footslope (a

declining slope leading into an area of flat ground),

hollow (a depressed area within a slope), valley (slope

inclining on either side), flat area (consistent absence

of slope within focal area), and pit (slope declining

towards from focal grid cell from all directions).

Raster grid cells in the geomorphometry data were

removed if they overlapped with known lakes. This

was particularly common for ‘pits’, which represent

depressions in the landscape that are likely to be

hydrologically significant (perhaps kettle holes, bogs,

or ponds, for example), but are not mapped as

hydrological features.

The surface parent material data on source and

mineralogy were each combined with these landform

(morphology) data using GIS, so that material and

landform were explicitly accounted for by novel

variables. This produced two datasets accounting for

the coverage of landform–material combinations,

which were used as predictor sets in separate species’

distribution models. Examples of these combined

landform–material variables for the landform-source

dataset were: coverage of glaciofluvial ridge, alluvial

terrace slope, glacigenic valley, and igneous spur for

the genesis dataset (n = 107 such combinations exist

within the landform–source dataset). For the land-

form–mineralogy dataset, for e.g.: clay silica valley;

calcium carbonate hollow; basic slope (137 such

combinations exist within the landform–mineralogy

dataset). These data are detailed in Appendix S3.

Species data

Species’ occurrence data were provided at a resolution

of 1 km2 (British National Grid cells) by the Botanical

Society of Britain and Ireland (BSBI), via the Distri-

bution Database. The BSBI hosts a single database

(the ‘Distribution Database’) to which data are con-

tributed by its volunteers and coordinators—who are

strongly encouraged to use unbiased sampling (Groom

et al. 2011). We used accepted data records (those

verified within the database) from the last 20 years and

rejected any species occurring in fewer than ten grid

cells. The Cairngorms ‘Rare Plant Register’ (RPR)

was used to identify rare species records for the area

(Amphlett 2012), whilst other species were classified

as ‘common’ in this study.

The definition of ‘rare’ species in the RPR is broad

and comprises species that are listed in the UK Red

List, UK Biodiversity Action Plan, Scottish Biodiver-

sity List and Wildlife and Countryside Act, or species

that are considered to be an endemic, native or

archaeophyte within the Cairngorms, nationally rare

or scarce; or a European Protected species (Amphlett

2012). For archaeophytes, only those that are rare in

the Cairngorms or of cultural significance are

included. The species in this list have no consistent

ecological difference compared to the ‘common’

species, but their inclusion provides conceptual

knowledge around species considered rare in this

landscape.

Data quantities were sufficient to run models for 76

‘rare’ species (covering 1640 grid cells; 34.6%) and

505 ‘common’ species (1757 grid cells; 36.8%). Many

cells contained only rare species, which can be

Fig. 2 The distribution of rare and common species occur-

rences on the 1 9 1 km grid used (blue = common records

only; green = rare only; black = both) within the Cairngorms

National Park. (Colour figure online)
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explained by the broad definition of rare species used

by this dataset, within which some species will be

locally common. Additionally, the BSBI may carry

out surveys in some areas that target specific rare

species. The distribution of species records is some-

what clustered, with largely unsurveyed areas inter-

spersed with well surveyed areas (which tend to be in

more accessible parts of this largely remote landscape;

Fig. 2).

Analysis

To model species’ distributions, we used boosted

regression trees (BRTs, a machine learning technique)

in R 3.4.0 (R Core Team 2018), with binary presence–

absence data as the response. With such a complex

dataset and largely unknown relationships (especially

regarding geodiversity) over many different geograph-

ical contexts with variable collinearities and interac-

tions, using a machine learning algorithm was

preferable to a deductive modelling approach. Addi-

tionally, BRTs explicitly consider interactions

between variables, which can point towards important

combined effects, as well as dealing with non-linearity

and collinearity reasonably well relative to other

methods (Elith et al. 2008; Dormann et al. 2013). We

produced models for the whole of the study area, and

for the north, east, south, and west individually, to

determine whether patterns were comparable in

different areas of this landscape (Fig. 2). Results are

presented for the whole area, unless they differed

substantially between sections.

We used gbm.step (gbm 2.1.1 package in R)

to implement the BRTs (Ridgeway 2017). This

function uses shrinkage procedures as each tree is

added, helping to control the number of terms, to

produce a more parsimonious model. It tries to avoid

overfitting by using regularisation methods. To study

an individual predictor’s model effects, the contribu-

tion (relative model influence) of each predictor on the

model outcome was obtained. These were scaled to

add to 100, where a value of 100 for a predictor means

that only that predictor contributed to the final model.

To aid interpretability of the results, we calculated the

correlation between a predictor and the response

variable, and applied the direction of the relationship

Table 2 Predictor sets used for Boosted Regression Tree Modelling

Model number Variables used in model

1 Climate ? Topography (i.e. traditional SDM variables)

2 Climate ? Topography 1 Hydrology 1 Landforms

3a Climate ? Topography ? Hydrology ? Landforms 1 Materials 2 source

3b Climate ? Topography ? Hydrology ? Landforms 1 Materials 2 mineralogy

4a Climate ? Topography ? Hydrology ? Landforms ?Landforms 3 Source

4b Climate ? Topography ? Hydrology ? Landforms ?Landforms 3 Mineralogy

Bold shows added or modified variables at each stage; italicised content = variables combined (x) together to create new data.

Table 1 shows details of which variables are in each of the variable categories presented below

Table 3 A summary of model change between Model 1 (standard SDM) and Model 2 (addition of landforms and hydrology) for rare

and common species; values show how many models were improved

Number of

paired

models

Did SS improve between Model 1

and Model 2?

Did CV mean improve between

Model 1 and 2?

Did CV AUC improve between

Model 1 and 2?

Yes No % of models

improved

Yes No % of models

improved

Yes No % of models

improved

Common 505 393 112 77.82 356 149 70.50 358 147 70.89

Rare 76 19 57 25.00 52 24 68.42 48 28 63.16

When considering all models together, self-statistics (SS), cross-validation statistics (CV), and CV AUC values showed a significant

improvement for common SDMs
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Fig. 3 SDM statistics and absolute model contributions (y axis;

0–100) from each predictor set and sub-set (Table 2) for all

common (light grey) and rare (dark grey) species across the

whole of the Cairngorms National Park. Model statistics (SS,

CV, AUC) have been multiplied by 100 for plotting but are

normally between 0 and 1. Appendix S4 shows this same figure,

but with model contributions modified to reflect negative

relationships
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to the model contribution value, so that negative

values represent negative relationships.

Most default parameters within gbm.step were

maintained. The tree complexity of 3 allowed up to

three-way interactions (Elith et al. 2008). The bag

fraction was 0.5, and the preferred learning rate was

0.05, which was occasionally reduced to 0.01, 0.005

and 0.001, in sequence, according to data require-

ments. Predictors contributing\ 10% (or some-

times\ 7.5% where the former removed almost all

variables) were removed from the initial model, which

was rerun with the simplified predictor set to produce

the final results.

As well as evaluation from internal fit statistics

(self-statistics; SS), model performance was assessed

using 10-fold cross-validation (CV) in the gbm

package. CV randomly subsamples the data ten times

according to the user-defined bag fraction (here 0.5,

i.e. 50%) and tests the model on this held-back portion

of data. The mean correlation between the training and

each testing dataset is then reported and we addition-

ally reported the area under ROC curve (AUC) values.

For display purposes in the results, we multiplied SS,

CV, and AUC values, which were originally between

0 and 1, by 100: a value of 100 would be a model that

explains all of the variation in the data (SS) or predicts

perfectly to a subset of data in the same area (CV),

whilst 0 indicates a very poorly fitted or predicting

model.

Analyses were run for multiple combinations of

climate, topography, and geodiversity variables

(Table 2) to assess the change (using Mann–Whitney

U tests) in model performance (SS, CV, and AUC)

when geodiversity data were added.

Results

Many individual species distribution models demon-

strated some statistical improvement upon the addition

of various geodiversity data to a basic SDM (i.e.

Model 1; climate and topography). Specifically,

between Model 1 and Model 2 (i.e. addition of

hydrology and landforms to basic SDM), increases

were seen in self-statistics (internal fit) for 25% of rare

and 78% of common species; in CV mean (predictive

ability) for 68% of rare and 71% of common; and for

CV AUC for 63% of rare and 71% of common SDMs

(Table 3). Mann–Whitney U tests showed that for all

common SDMs’ results together, there were statisti-

cally significant increases only between Model 1 and 2

for SS and CV, Models 1 and 4a for SS, CV, and AUC

(addition of landforms and merged landform-miner-

alogy data), and Models 1 and 4b (addition of

landforms and landform-mineralogy data). However,

such significant improvements were not seen between

Model 2 and 4a and 4b (i.e. adding combined landform

data when the standard landform data were already

included). Many individual SDMs in these classes and

for rare species, however, showed statistical improve-

ment even where a significant improvement across all

models was elusive, but not to the extent seen in

Table 3 after the addition of just landform and

hydrology data between Models 1 and 2.

In Models 4a and 4b (using the combined landform-

material data), contributions to SDMs from all geodi-

versity components (GDCs) is clear (Fig. 3), even

where significant model improvements were not

observed. Topography data (mean and range in

elevation and slope) typically dominated the SDMs.

Contributions from climate (annual precipitation and

annual mean temperature) and then landforms were

comparable with one another. A clear decrease in

model contribution was seen with topography upon the

addition of landform and hydrology data (i.e. between

Models 1 and 2; Fig. 3) and a much smaller decrease

in model contribution from landforms upon the

addition of the combined landform-material data.

Climate was consistent in terms of its contribution to

explaining variance, with a median of around 25% for

rare and common species across all models.

Geodiversity variables frequently appeared

amongst the dominant model predictors for Models

4a and 4b. Climatic and topographic variables gener-

ally defined the most frequent dominant model

predictors (i.e. the predictors that explained the most

variance), relating to species’ distributions in different

directions, with mean temperature and mean elevation

more often relating negatively to species; distributions

and slope standard deviation, and a number of GDCs

more commonly relating positively to species’ distri-

butions. For example, as sedimentary alluvial and

glacigenic spurs, and pits in Model 4a and rivers, clay-

silica spurs and pits, basic slopes, and calcium

carbonate slopes in Model 5a. Responses across each

species were highly idiosyncratic, however. Climate

and topography also defined the most common and

strong model interactions with one another (e.g. mean
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temperature and annual precipitation with mean

elevation), with some interactions also between

topography and certain landforms (e.g. spurs and

elevation; rivers and mean elevation; Table 4).

Rather than attempt to detail the results of every

SDM here, we present a few examples in relation to

known ecology, from Models 4a and 4b (Table 5; the

full set of species-by-species results is included in

Appendices S5 and S6). Many SDMs produced results

in-keeping with species’ known ecology. For example,

for Viola canina (Heath Dog Violet), known to live

mainly in heathlands (dry and wet) and prefer acidic

Table 4 The frequency of dominant model predictors with either positive or negative relationships with species’ distributions

(a) Geodiversity: combined landform–source predictors (Model 4a) (b) Geodiversity: combined landform–mineralogy

predictors (Model 4b)

Common SDMs (n = 499) Rare SDMs (n = 73) Common SDMs (n = 500) Rare SDMs (n = 75)

Most dominant POSITIVE model predictors

1 Sed. alluvial spur (44,

19.37%)

Elev. (mean) (9, 41.14%) Slope (SD) (41, 21.96%) Elev. (mean) (16, 34.62%)

2 Temp. (mean) (43, 18.28%) Slope (SD) (5, 32.41%) Temp. (mean) (40,

18.52%)

CaCO3 slope (7, 27.3%)

3 Slope (SD) (35, 20.46%) Met. Sed. Gen. hollow (5, 23.59%) Pit (38, 23.17%) Slope (SD) (5, 31.03%)

4 Pit (30, 18%) Met. Sed. Gen. valley (4, 26.16%) River (34, 17.53%) CS pit (4, 30.37%)

5 Sed. Glaci-gen spur (27,

18.66%)

Sed. Glaci-fluv peak (4, 24.97%) CS spur (32, 21.33%) Basic slope (4, 27.68%)

Most dominant NEGATIVE model predictors

1 Elev. (mean) (261,

- 27.71%)

Precip. (mean) (14, - 20.04%) Elev. (mean) (289,

- 30.75%)

Elev. (mean) (13,

- 27.89%)

2 Precip. (mean) (104,

- 20.86%)

Temp. (mean) (12, - 16.77%) Precip. (mean) (85,

- 24.62%)

Precip. (mean) (13,

- 19.16%)

3 Temp. (mean) (18,

- 14.15%)

Elev. (mean) (8, - 29.2%) Temp. (mean) (21,

- 14.55%)

Temp. (mean) (11,

- 17.94%)

4 Elev. (SD) (11, - 20.25%) Slope (mean) (4, - 14.34%) Elev. (SD) (20, - 23.93%) Elev. (SD) (3, - 15.2%)

5 Slope (mean) (10, - 17.33%) Met. Sed. Gen. slope (3,

- 25.84%)

Slope (mean) (8,

- 25.78%)

UB slope (2, - 22.88%)

Most frequent dominant interactions (selected)

1 Precip. (mean) 9 Elev.

(mean)

Precip. (mean) 9 Slope (SD) Precip. (mean) 9 Elev.

(mean)

Temp 9 Elev. (mean)

2 Slope (SD) 9 Elev. (mean) Temp 9 Elev. (mean) Slope (SD) 9 Elev. (mean) Precip. (mean) 9 Slope

(SD)

3 Temp 9 Elev. (mean) Elev. (mean) 9 Met. Sed. Gen.

Hollow

Temp 9 Elev. (mean) River 9 Slope (mean)

4 Spur 9 Elev. (mean) Hollow 9 Sed. Glaci-gen slope Basic slope 9 Elev.

(mean)

Slope (SD) 9 Elev. (mean)

5 River 9 Elev. (mean) Met. Sed. Gen. valley 9 Elev.

(mean)

Spur 9 Elev. (mean) Slope (SD) 9 Slope

(mean)

Structure: Predictor (count, average model contribution), where ‘count’ is the number of times that a predictor was the main predictor

in the species’ distribution models (‘SDMs’). Selected dominant and most frequent interactions are also provided. A full table of

results containing each species and the top five positive and negative predictors, as well as the model fit statistics and pivot tables, is

provided in Appendices S5 and S6. If there was a joint ranking for position number 5 (i.e. two predictors were dominant in the same

number of models), then the one with the greatest average contribution was used

CaCO3 calcium carbonate, CS clay/silica or silica/clay, Elev. elevation, Gen. generic, Glaci-gen glacigenic, Glaci-fluv glacifluvial,

Met metamorphic, Prec. annual precipitation, River river length, Sed. sedimentary, SD standard deviation, Temp annual mean

temperature, UB ultrabasic

123

Landscape Ecol



T
a
b
le

5
S

el
ec

te
d

p
la

n
ts

fr
o

m
w

id
er

S
D

M
re

su
lt

s
(s

am
e

sp
ec

ie
s

re
p

ea
te

d
in

co
rr

es
p

o
n

d
in

g
ro

w
fo

r
so

u
rc

e
[4

a]
an

d
m

in
er

al
o

g
y

[4
b

]
an

al
y

se
s)

S
p

ec
ie

s
R

ar
e/

co
m

m
o

n

(S
S

co
rr

)

D
o

m
in

an
t

p
re

d
ic

to
r

(p
o

si
ti

v
e)

(%
)

S
ec

o
n

d

p
re

d
ic

to
r

(p
o

si
ti

v
e)

(%
)

D
o

m
in

an
t

p
re

d
ic

to
r

(n
eg

at
iv

e)
(%

)

S
ec

o
n

d

p
re

d
ic

to
r

(n
eg

at
iv

e)
(%

)

M
ai

n
m

o
d

el
le

d

in
te

ra
ct

io
n

(a
9

b
)

N
o

te
s

o
n

ec
o

lo
g

y
(a

n
d

st
at

u
s)

o
f

th
is

sp
ec

ie
s

L
an

d
fo

rm
-s

o
u

rc
e

d
at

a
(M

o
d

el
4

a)

V
io
la

ca
n
in
a

R
ar

e
(0

.6
3

)
S

ed
.

al
lu

v
ia

l

fa
n

v
al

le
y

(1
1

.6
5

%
)

S
ed

.
m

ir
e

o
r

b
o

g
sl

o
p

e

(7
.8

5
%

)

E
le

v
.

(S
D

)

(-
1

5
.7

4
%

)

S
lo

p
e

(m
ea

n
)

(-
9

.0
4

%
)

R
iv

er
9

S
ed

.
al

lu
v

ia
l

p
it

D
ry

o
r

w
et

h
ea

th
s.

S
ev

er
e

d
ec

li
n

es
si

n
ce

1
9

5
0

s

S
p
er
g
u
la
ri
a

ru
b
ra

C
o

m
m

o
n

(0
.5

9
)

M
et

.
G

en
.

h
o

ll
o

w

(1
9

.7
3

%
)

S
ed

.

g
la

ci
o

fl
u

v
ia

l

sl
o

p
e

(1
0

.2
6

%
)

E
le

v
.

(m
ea

n
)

(-
2

2
.9

3
%

)

P
re

ci
p

.
(m

ea
n

)

(-
1

1
.6

4
%

)

S
ed

.
g

la
ci

o
fl

u
v

ia
l

h
o

ll
o

w
9

S
ed

.

g
la

ci
o

fl
u

v
ia

l
sl

o
p

e

F
re

e-
d

ra
in

in
g

sa
n

d
y

o
r

g
ra

v
el

ly
g

ro
u

n
d

S
a
xi
fr
a
g
a

h
yp
n
o
id
es

R
ar

e
(0

.6
1

)
M

et
.

S
ed

.
G

en
.

h
o

ll
o

w

(4
2

.7
9

%
)

S
lo

p
e

(m
ea

n
)

(2
8

.3
5

%
)

N
A

N
A

S
lo

p
e

(m
ea

n
)
9

M
et

.

S
ed

.
G

en
.

h
o

ll
o

w

D
am

p
ro

ck
le

d
g

es
;

b
o

u
ld

er
s;

sc
re

es

C
a
re
x

a
tr
a
ta

R
ar

e
(0

.7
5

)
M

et
.

S
ed

.
G

en
.

v
al

le
y

(2
6

.6
2

%
)

S
lo

p
e

S
D

(2
5

.4
7

%
)

N
A

N
A

S
ed

.
w

ea
th

er
in

g

h
o

ll
o

w
9

S
lo

p
e

(S
D

)

U
n

g
ra

ze
d

ar
ea

s;
fa

ce
s

o
f

ca
lc

ar
eo

u
s

cl
if

fs

Ju
n
cu
s

tr
ifi
d
u
s

C
o

m
m

o
n

(0
.6

9
)

E
le

v
.

(m
ea

n
)

(3
7

.2
%

)

E
le

v
.

(S
D

)

(8
.6

4
%

)

T
em

p
.

(m
ea

n
)

(-
1

4
.4

4
%

)

Ig
n

eo
u

s

in
tr

u
si

v
e

h
o

ll
o

w

(-
3

.5
5

%
)

Ig
.

in
tr

u
si

v
e

sp
u

r

sp
u

r
9

E
le

v
.

(m
ea

n
)

W
in

d
-s

w
ep

t
p

la
te

au
s,

li
ch

en
-r

ic
h

cr
ev

ic
es

L
an

d
fo

rm
-

m
in

er
al

o
g

y
d

at
a

(M
o

d
el

4
b

)

V
io
la

ca
n
in
a

R
ar

e
(0

.6
9

)
C

S
v

al
le

y

(9
.3

1
%

)

O
rg

an
ic

sl
o

p
e

(7
.0

8
%

)

E
le

v
.

(S
D

)

(-
1

7
.4

2
%

)

E
le

v
.

(m
ea

n
)

(-
1

0
.2

9
%

)

S
il

ic
a

v
al

le
y
9

E
le

v
.

(S
D

)

A
ci

d
h

ab
it

at
s

S
p
er
g
u
la
ri
a

ru
b
ra

C
o

m
m

o
n

(0
.6

7
)

C
S

sl
o

p
e

(1
5

.7
4

%
)

C
S

h
o

ll
o

w

(1
3

.8
6

%
)

E
le

v
.

(m
ea

n
)

(-
2

6
.1

5
%

)

C
S

p
it

(-
1

6
.0

7
%

)

P
re

ci
p

(m
ea

n
)
9

E
le

v
.

(m
ea

n
)

A
ci

d
ic

sa
n

d
s

an
d

g
ra

v
el

s

S
a
xi
fr
a
g
a

h
yp
n
o
id
es

R
ar

e
(0

.5
7

)
M

g
C

O
3

C
S

h
o

ll
o

w

(3
2

.1
5

%
)

S
lo

p
e

(S
D

)

(2
8

.8
8

%
)

N
A

N
A

L
ak

e
ar

ea
9

S
lo

p
e

(S
D

)

D
am

p
ro

ck
le

d
g

es
;

p
ar

ti
al

sh
ad

e;
b

as
e-

ri
ch

su
b

st
ra

te
s

C
a
re
x

a
tr
a
ta

R
ar

e
(0

.7
7

)
H

o
ll

o
w

(2
9

.9
6

%
)

S
lo

p
e

S
D

(2
5

.7
5

%
)

R
iv

er

(-
9

.3
5

%
)

N
A

R
iv

er
9

S
lo

p
e

(S
D

)
U

n
g

ra
ze

d
ar

ea
s;

fa
ce

s

o
f

ca
lc

ar
eo

u
s

cl
if

fs

Ju
n
cu
s

tr
ifi
d
u
s

C
o

m
m

o
n

(0
.6

8
)

E
le

v
.

(m
ea

n
)

(3
9

.6
2

%
)

S
lo

p
e

S
D

(8
.7

9
%

)

T
em

p
.

(m
ea

n
)

(-
1

3
.5

6
%

)

A
ci

d
h

o
ll

o
w

(-
5

.5
9

%
)

E
le

v
.

(S
D

)
9

E
le

v
.

(m
ea

n
)

W
in

d
-s

w
ep

t
p

la
te

au
s,

li
ch

en
-r

ic
h

cr
ev

ic
es

C
S

cl
ay

/s
il

ic
a

o
r

si
li

ca
/c

la
y

,
G
en

g
en

er
ic

,
G
F

g
la

ci
o

fl
u

v
ia

l,
Ig
.

ig
n

eo
u

s,
M
g
C
O
3

m
ag

n
es

iu
m

ca
rb

o
n

at
e,

M
et

m
et

am
o

rp
h

ic
,
R
iv
er

ri
v

er
le

n
g

th
,
S
D

st
an

d
ar

d
d

ev
ia

ti
o

n
,
S
ed
.

se
d

im
en

ta
ry

,
T
em

p
.

an
n

u
al

m
ea

n
te

m
p

er
at

u
re

R
ar

e
o

r
co

m
m

o
n

ac
co

rd
in

g
to

th
e

d
es

ig
n

at
io

n
u

se
d

in
th

e
‘R

ar
e

P
la

n
ts

R
eg

is
te

r’
fo

r
th

e
C

ai
rn

g
o

rm
s

N
at

io
n

al
P

ar
k

,
w

it
h

in
w

h
ic

h
th

e
d

efi
n

it
io

n
o

f
‘r

ar
e’

is
re

la
ti

v
el

y
b

ro
ad

(A
m

p
h

le
tt

2
0

1
2

)

N
o

te
s

o
n

th
e

ec
o

lo
g

y
o

f
ea

ch
sp

ec
ie

s
p

ri
n

ci
p

al
ly

fr
o

m
th

e
‘N

ew
F

lo
ra

o
f

th
e

B
ri

ti
sh

Is
le

s’
(S

ta
ce

2
0

1
0

)
an

d
/o

r
w

w
w

.b
rc

.a
c.

u
k

123

Landscape Ecol

http://www.brc.ac.uk


substrates, we found a positive association with valley

sides and alluvial fan materials and with clay-silica

valley landforms. Meanwhile, Saxifraga hypnoides

(Mossy Saxifrage), a species listed on the area’s Rare

Plants Register, known to prefer rock ledges, shade

and basic substrates was positively associated with

hollow (specifically magnesium carbonate and clay-

silica hollows) and slope landforms, and areas with

steeper slopes and a greater standard deviation in

slope. Juncus trifidus (Highland rush), which is known

to be is associated with high, wind-swept plateaus,

provides an example of an SDM driven almost entirely

by topography and climate.

Discussion

Our findings support the notion that geodiversity data

(i.e. explicit landforms, surface materials, and hydrol-

ogy) can improve traditional species distribution

models that use only climate and basic topographic

metrics; this research extends the limited body of

existing research linking geodiversity to biodiversity.

The greatest improvements, in terms of model eval-

uation statistics, were seen when hydrology (rivers and

lakes) and automatically-generated landform data

from geomorphometry were added to basic SDMs

(topography and climate). Information on the cover-

age of surface materials in each grid cell (parent

material and mineralogy) and the datasets combining

landforms and materials resulted in no significant

improvements across all models; many individual

SDMs, however, showed an improvement, demon-

strating idiosyncrasies between species.

The explanatory power of geodiversity, overall,

was greater than previously found across most of

Britain for species richness at similar landscape

extents of around 25 km in diameter (Bailey et al.

2017). The existence of specific geodiversity contri-

butions for explaining distributions of individual

species (both ‘rare’ and ‘common’) represents a

significant advancement in the context of the ‘Con-

serving Nature’s Stage’ (CNS) research agenda

(Lawler et al. 2015). Indeed, in linking individual

species’ distributions to specific geofeatures, we move

correlative SDMs closer to the real ecologies of

species.

Improved knowledge of species’ relationships with

specific geofeatures across spatial scales is likely to be

important in the context of climate change, whether it

be due to indirect (e.g. direct effects on physical soil

properties and physical processes such as snow melt)

or direct (e.g. species’ thermal tolerances) climate

impacts (Shaw and Thompson 2006; Brazier et al.

2012). For the many SDMs that were dominated by

climate, geofeatures still showed additive effects.

Meanwhile, those species for which geofeatures were

most important may be safeguarded against climatic

changes where these features are proactively managed

and considered in protected area planning. The

presence of specific materials (geology and soil),

landforms and hydrological systems may help to

ensure continuation of particular species; geodiversity

has been linked to species’ persistence and adaptation

to climate change in North America, for example

(Anderson et al. 2014; Albano 2015; Magness et al.

2018). The importance of topography-driven micro-

climatic heterogeneity for buffering species against

climate change has recently been demonstrated (Sug-

gitt et al. 2018), which, along with the present study’s

use of elevation and slope, supports the continued

value of such topographic metrics.

For those species whose distributions were domi-

nated by climate, but where geofeatures were still

contributory, indirect climatic effects may be mani-

fested within these features and their importance may

not be proportional to their modelled contribution,

given known indirect effects through soils and land-

forms. For example, increases in monthly minimum

temperatures are likely to affect species not only

directly, but also via changes to geomorphological and

soil processes, such as changes in weathering, erosion,

disturbance events (Viles et al. 2008; Virtanen et al.

2010), snow melt (Kankaanpää et al. 2018) and water

storage and transfer (Brazier et al. 2012), and changes

in microbial communities (Zogg et al. 1997). Many

such processes are implicitly incorporated in our

models through the explicit inclusion of geodiversity,

which may act as a proxy for microclimate and fine-

scale resource availability (Hjort et al. 2012; Anderson

et al. 2014; Tukiainen et al. 2017b). In the context of

future climate change, these findings may therefore be

significant in understanding species’ distribution

changes, given the expected temperature and rainfall

increases in this part of the United Kingdom (Werritty

2002). However, such processes have not been

explicitly modelled here, and more work is needed

in this area.
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Geofeatures relating to pit landform coverage (i.e.

areas of depressed land surrounded by relatively flat

ground) were frequently a dominant predictor that had

a positive relationship with species’ distributions. This

variable is likely to be hydrologically relevant and

may represent unmapped lochans (small lakes), ponds,

bogs and kettleholes, for example. These would

generally be very moist and may form temporary

ponds, which have been linked closely to species’

distributions (Vandvik et al. 2005; Hjort et al. 2015).

They are, however, likely to be important beyond their

hydrological properties because indented surfaces can

provide protection from high winds, humans and

grazing animals (Vandvik et al. 2005).

Similar considerations apply to mountain hollows,

which provide shade and shelter, as well as rocky

outcrops. Hollows (either in themselves or in combi-

nation with land surface materials) frequently con-

tributed to our SDMs. Late-lying snow patches in the

Cairngorms are common, providing important habitats

(Gimingham 2002), and hollows affect spatiotemporal

snowmelt and moisture patterns, which has been noted

in higher-latitude landscapes (Litaor et al. 2008;

Kankaanpää et al. 2018). Quantifying landform mor-

phology and combining these data with information on

land surface materials may provide more useful

information for managers studying species’ distribu-

tions compared to using crude DEM-derived metrics

such as slope and the topographic wetness index

(TWI), for example. TWI, for example, may fail to

represent hydrology and soil moisture levels effec-

tively because of local edaphic and geological condi-

tions (Kopecký and Čı́žková 2010).

Our findings relate to the body of research on

‘CNS’, in which the focus of conservation is on the

areas capable of supporting higher biodiversity

because of inherently higher geodiversity (Anderson

and Ferree 2010; Lawler et al. 2015). Geodiverse

locations are thought to improve species’ ability to

adapt and persist in the face of climatic changes, which

is supported by studies of microclimatic refugia and

buffering (Lenoir et al. 2013; Lawler et al. 2015;

Suggitt et al. 2018). Indeed, considering explicit

geofeatures’ edaphic, hydrological, and solar proper-

ties (rather than just using general topographic met-

rics) in the context of buffering and microclimates

provides a clear next step to help with the targeted

management of these geofeatures for biodiversity

conservation. Geodiverse areas, however, are not

always well represented by protected area networks

(Albano 2015; Ordonez et al. 2016).

An overall geodiversity metric may identify an area

as a good ‘stage’ upon which to conserve biodiversity

generally (i.e. where the identities of the species

present are less important than overall biodiversity),

but give little information as to why that site is good,

beyond that it is simply ‘geodiverse’: hydrological

features, a certain soil type, or specific landform might

be driving the richness-geodiversity relationship.

Therefore, targeting specific features is likely to be

of value to management efforts. If so, explicit links

have to be made between specific geofeatures and

species across multiple taxa and scales and geodiver-

sity metrics should, where possible, be accompanied

with geofeature-specific analyses, such as in the

present study. More frequently considering individual

species’ distributions would be beneficial for empir-

ical work, as well as for practical conservation. As part

of conservation efforts, such empirical studies using

geodiversity should support proactive, rather than

reactive, planning and management, including

accounting for connectivity, through incorporation of

geodiversity (Magness et al. 2018).

Reserve management also needs to account for

biological interactions. It is not possible without fine-

scale studies to ascertain the extent to which particular

landforms (e.g. depressions such as pits and hollows)

have contributed to our models because of the

biological protection they offer, but, for example, we

saw model contributions from hollow and valley

predictors for Carex atrata’s distribution model,

which is known to favour ungrazed areas. Grazing is

particularly relevant to management in Scotland, and

for British uplands more widely (especially in terms of

deer and hares). Previous work suggests that some

landforms can indeed protect plants and lichens from

grazing (Gulliver 2013; Moore and Crawley 2014),

and some of our results may reflect this. Deer numbers

in Scotland are thought to be stabilising after sharp

increases since the 1960s, while numbers are actively

being managed and reduced in some parts of the

Scottish Highlands (Edwards and Kenyon 2013).

Fenced-off areas could reveal much about the ability

of landforms to shelter species from herbivores. For

example: how do geofeature–biodiversity and geofea-

ture–species relationships differ between grazed and

ungrazed areas?
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Data considerations

Data produced automatically using geomorphometry

were of great value in this study and required a

relatively fine-scale DEM and open source GIS

software (GRASS Development Team 2018). Such

techniques will no doubt become more common as

algorithms develop and the user base of open source

GIS software expands. We also combined these

morphology data with 1:50,000 scale geology maps

to produce a semi-automated dataset that was more

conceptually sophisticated than using morphometry

data alone (though, this extra data effort did not

translate into quantitative model improvements).

However, this is still very different to using profes-

sionally-mapped geomorphology data where knowing

about the presence of a specific feature (e.g. an esker or

kame terrace) can immediately provide the modeller

with information on fine-scale abiotic processes and

conditions (Hjort and Luoto 2010). It therefore

remains an open question as to whether automatically

mapped geomorphometry data are more or less useful

than cheaper and easily-obtainable geomorphometrics

for understanding species’ distributions and biodiver-

sity patterns.

In the absence of such professional geomorphology

maps, the techniques used in our study may provide an

intermediate solution and additional knowledge: auto-

mated geomorphometry combined with existing geo-

logical maps. We therefore suggest that information

on surface materials should be used alongside mor-

phology data where possible, despite the limited

model improvements seen, because they added con-

ceptual value to models for certain species, even

though improvements to the models were not seen

across all SDMs. These surface material data may be

hard to extract automatically where they do not exist,

but remote sensing techniques have much potential in

this context (see Discussion in Bailey et al. 2017) and

national and global databases are growing (e.g. Hengl

et al. 2017).

Conclusions and Future Directions

Our study represents a clear progression in the use of

spatially explicit geodiversity data within the broader

body of environmental heterogeneity research at the

landscape scale. We saw consistent model

improvements after incorporating morphological

landform data into SDMs and recommend wider

consideration of such data. These data were straight-

forward to produce and added much conceptual value

around understanding why species were found in

certain places. Combining these data with surface

material properties relating to source and mineralogy

added further conceptual value, but quantitative model

improvements were less consistent. A greater aware-

ness of geofeatures in conservation and management

will be beneficial in the face of environmental change,

to enable more informed decisions about protected

area planning and management. Geodiversity as a

concept provides a tangible means to achieve this and

will allow for the targeting of explicit, identifiable

features on the ground that we can relate to abiotic

properties for biodiversity conservation.

We found that predictive ability (measured using

cross-validation) was generally low, which may be

due to the quantity of species observations and

shortage of training data or, alternatively, a real effect

of species’ dispersal limitations in this landscape

(Guisan and Thuiller 2005; Zurell et al. 2009).

However, internal fit (self-statistics) values were

generally high. It therefore remains an open question

as to whether these geodiversity data can improve

models’ predictive ability, or whether they are most

suited to improving models in a given place and time.

It would be useful to improve our understanding of

the abiotic properties surrounding specific geofeatures

(e.g. are some geofeatures’ properties especially

relevant in the context of microclimate buffering,

sheltering, and resource provision?); develop a fuller

understanding of different types of geodiversity data

and which might be useful in different contexts (e.g.

are professionally mapped geomorphology data sig-

nificantly better at predicting species’ distributions

than geomorphometry data?); and assess the role of

geodiversity at a greater range of spatio-temporal

scales and for multiple taxa (e.g. are geodiversity data

more relevant for species with specific life history

traits?). Essentially, further integrating geodiversity

data into science and policy, as well as identifying

when and where (geographically and taxonomically)

different components of geodiversity are of the

greatest value should be key considerations moving

forwards.
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Brunet J, Bruun HH, Dahlberg CJ, Decocq G, Diekmann

M, Dynesius M, Ejrnaes R, Grytnes JA, Hylander K,

Klanderud K, Luoto M, Milbau A, Moora M, Nygaard B,

Odland A, Ravolainen VT, Reinhardt S, Sandvik SM,

Schei FH, Speed JDM, Tveraabak LU, Vandvik V, Velle

LG, Virtanen R, Zobel M, Svenning JC (2013) Local

temperatures inferred from plant communities suggest

strong spatial buffering of climate warming across North-

ern Europe. Glob Chang Biol 19(5):1470–1481. https://doi.

org/10.1111/gcb.12129

Litaor MI, Williams M, Seastedt TR (2008) Topographic con-

trols on snow distribution, soil moisture, and species

diversity of herbaceous alpine Vegetation, Netwot Ridge,

Colorado. J Geophys Res Biogeosci 113:1–10. https://doi.

org/10.1029/2007JG000419

Magness DR, Sesser AL, Hammond T (2018) Using topo-

graphic geodiversity to connect conservation lands in the

Central Yukon, Alaska. Landscape Ecol 33:547–556.

https://doi.org/10.1007/s10980-018-0617-0

123

Landscape Ecol

https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1016/j.gloenvcha.2009.11.002
https://doi.org/10.1016/j.gloenvcha.2009.11.002
https://doi.org/10.1080/14702541.2012.728243
https://doi.org/10.1080/14702541.2012.728243
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1111/cobi.12510
https://doi.org/10.1007/s10531-012-0376-1
https://doi.org/10.1016/j.geomorph.2009.09.039
https://doi.org/10.1016/j.geomorph.2012.11.005
https://doi.org/10.1016/j.geomorph.2012.11.005
https://doi.org/10.1111/j.1654-1103.2009.05577.x
https://doi.org/10.1111/j.1654-1103.2009.05577.x
https://doi.org/10.1080/15230430.2017.1415624
https://doi.org/10.1080/15230430.2017.1415624
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1111/j.1755-263X.2010.00097.x
https://doi.org/10.1111/j.1755-263X.2010.00097.x
https://doi.org/10.1111/j.1654-109X.2010.01083.x
https://doi.org/10.1111/j.1654-109X.2010.01083.x
https://doi.org/10.1111/cobi.12505
https://doi.org/10.1111/j.1600-0587.2012.07922.x
https://doi.org/10.1111/j.1600-0587.2012.07922.x
https://doi.org/10.1111/gcb.12129
https://doi.org/10.1111/gcb.12129
https://doi.org/10.1029/2007JG000419
https://doi.org/10.1029/2007JG000419
https://doi.org/10.1007/s10980-018-0617-0


McClatchey J (1996) Spatial and attitudinal gradients of climate

in the Cairngorms—observations from climatological and

automatic weather stations. Bot J Scotl 48:31–49

Moore O, Crawley MJ (2014) The natural exclusion of red deer

from large boulder grazing refugia and the consequences

for saxicolous bryophyte and lichen ecology. Biodivers

Conserv 23:2305–2319. https://doi.org/10.1007/s10531-

014-0725-3

Nethersole-Thompson D, Watson A, Watson A (1974) The

Cairngorms: their natural history and scenery. Collins,

London

Ordonez A, Williams JW, Svenning J (2016) Mapping climatic

mechanism likely to favour the emergence of novel com-

munities. Nat Clim Change 6:1–9. https://doi.org/10.1038/

NCLIMATE3127

Parks KE, Mulligan M (2010) On the relationship between a

resource based measure of geodiversity and broad scale

biodiversity patterns. Biodivers Conserv 19:2751–2766.

https://doi.org/10.1007/s10531-010-9876-z

Pausas JG, Carreras J, Ferre A, Font X, Juli G (2003) Coarse-

scale plant species richness in relation to environmental

heterogeneity. J Veg Sci 14(5):661–668

Peterson AT, Soberón J, Pearson RG, Anderson RP, Martı́nez-

Meyer E, Nakamura M, Araújo MB (2011) Ecological
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Vandvik V, Heegaard E, Måren IE, Aarrestad PA (2005)

Managing heterogeneity: the importance of grazing and

environmental variation on post-fire succession in heath-

lands. J Appl Ecol 42:139–149. https://doi.org/10.1111/j.

1365-2664.2005.00982.x

Viles HA, Naylor LA, Carter NEA, Chaput D (2008) Biogeo-

morphological disturbance regimes: progress in linking

ecological and geomorphological systems. Earth Surf

Process Landf 33:1419–1435. https://doi.org/10.1002/esp
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