Dechant, Pierre-Philippe ORCID logoORCID: https://orcid.org/0000-0002-4694-4010 (2019) Machine-learning a virus assembly fitness landscape. In: SIAM Conference on Applied Algebraic Geometry, 9th - 13th July 2019, University of Bern, Bern, Switzerland. (Unpublished)

Downloaded from: https://ray.yorksj.ac.uk/id/eprint/4026/

Research at York St John (RaY) is an institutional repository. It supports the principles of open access by making the research outputs of the University available in digital form. Copyright of the items stored in RaY reside with the authors and/or other copyright owners. Users may access full text items free of charge, and may download a copy for private study or non-commercial research. For further reuse terms, see licence terms governing individual outputs. Institutional Repository Policy Statement

RaY

Research at the University of York St John

For more information please contact RaY at ray@yorksi.ac.uk

Est. YORK 1841 ST JOHN UNIVERSITY

UNIVERSITÄT BERN

Machine-learning a virus assembly fitness landscape

SIAM Algebraic geometry, data science and fundamental physics Bern, July 12, 2019

Pierre-Philippe Dechant

work with Y-H He and R Twarock

Pro Vice Chancellor's Office, York St John University York Cross-disciplinary Centre for Systems Analysis, University of York Department of Mathematics, University of York

- Input vector: Genotype/Phenotype of length 12 (packaging signal strengths in 3 bands)
- Output vector: Assembly efficiency (out of 2000 possible capsids)
- Black box: Molecular dynamics simulations (computationally very costly)

- Input vector: Genotype/Phenotype of length 12 (packaging signal strengths in 3 bands)
- Output vector: Assembly efficiency (out of 2000 possible capsids)

Black box: Machine learning via a neural network

```
Genome
                   Fitness
    1111111111111
                       200
                      1393
    111111111112
    111111111113
                      1869
                      1597
3
    1111111111111
                      1896
    111111111122
    111111111123
                      1960
    1111111111131
                      1875
    111111111132
                      1959
    111111111133
                      1961
    111111111211
                      1639
    111111111212
                      1683
11
    111111111213
                      1895
                      1848
    111111111221
    111111111222
                      1904
    111111111223
                      1964
    111111111231
                      1904
    111111111232
                      1949
    111111111233
                      1959
                      1852
18
    111111111311
    111111111312
                      1858
```

 $3^{12} \sim \frac{1}{2}$ Million data points

Overview

- 1
- Virus structure and assembly
- Toy model and evolutionary fitness landscape

- 2
- Neural networks
- Predictions

What is a Virus?

- Piece of genetic information in the form of RNA or DNA
- Protected by a protein shell: capsid made of geometric protein building block

Most viruses are icosahedral

- Highly developed structure theory
- Nucleic acid component thought to be disordered

Simplest model: a dodecahedron

Assembly and thermodynamics – Hamiltonian paths

Toy model and evolutionary fitness landscape

Assembly and thermodynamics – Hamiltonian paths

Assembly and thermodynamics – Hamiltonian paths

3D distribution: RNA-CP contacts

There are specific interactions between RNA and coat protein (CP) given by icosahedral symmetry axes

3D distribution: RNA-CP contacts

There are specific interactions between RNA and coat protein (CP) given by icosahedral symmetry axes

Packaging signal-mediated assembly

Engineering Packaging Signals to make VLPs

Virus-like particles with improved PS sequences assemble twice as efficiently. Potential applications to vaccines or drug delivery.

Genotype – Phenotype – Fitness map

Simplest model: the dodecahedron

- 12 PSs in 3 bands (strong/intermediate/weak, 12/8/4, 3/2/1, green/blue/red)
- Molecular dynamics simulation: stochastically select one possible reaction at a time
- Enough resources for 2000 virus capsids

Fitness Landscape

Generally messy (many contributions) and difficult to quantify. Here capture the assembly contribution for the phenotype space of 3^{12} points with (stochastic) assembly efficiency (< 2000).

Fundamental Physics

Genotype-fitness map

	Genome	Fitness
0	1111111111111	200
1	1111111111112	1393
2	111111111111	1869
3	1111111111121	1597
4	111111111122	1896
5	111111111123	1960
6	1111111111131	1875
7	111111111132	1959
8	111111111133	1961
9	1111111111211	1639
10	111111111212	1683
11	1111111111213	1895
12	111111111221	1848
13	111111111222	1904
14	111111111223	1964
15	111111111231	1904
16	111111111232	1949
17	111111111233	1959
18	1111111111311	1852
19	1111111111312	1858

 $3^{12} \sim \frac{1}{2}$ Million data points

Overview

- Virus structure and assembly
- Toy model and evolutionary fitness landscape

- 2
- Neural networks
- Predictions

- Input vector: Genotype/Phenotype of length 12 (packaging signal strengths in 3 bands)
- Output vector: Assembly efficiency (out of 2000 possible capsids)
- Black box: Machine learning via a neural network

Machine Learning with a Neural Network

Predictions

predicted vs actual value of assembly efficiency

Predictions

vs random assignments of assembly efficiency

Not just random, intrinsic features?

Definite starting point with strong binding, then weaker binding in an error-correcting bit, driven to completion by thermodynamics

Learning Curve

Conclusions

Do more realistic models in future – geometry, binding gradation. Partially explore the landscape and predict the rest (procedurally)?

Thank you!

Machine-learning a virus assembly fitness landscape P-P Dechant, Y-H He, arXiv preprint arXiv:1901.05051, 2019