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Abstract—Computing is fundamentally about processing data
which must be readily accessible to processing elements. Hence,
the use of storage hierarchies plays an important role in the
overall performance of computer systems. Recently, due to the
deployment of fast networks, network storage has emerged as
a viable alternative to large local storage systems. However,
trying to provide reliable network storage in highly mobile
environments, such as vehicular networks, results in the need
to address several issues. This paper explores these challenges
by first looking at the communication dynamics required for
seamless connectivity in these networks. It then looks at how
services can be migrated as users move around. The results of
this analysis are applied to the migration of a simple Network
Memory Server using different migration techniques such as
Docker, KVM, LXD and Unikernels in an edge environment,
represented by a real Vehicle Ad-Hoc Network. The results show
that a proactive approach to service migration is needed to
support such services in highly mobile environments.

Index Terms—Network Storage, Service Migration, Network
Memory Server, Docker, KVM, LXD.

I. INTRODUCTION

Networks are getting faster, resulting in higher bandwidths
as well as low latency. Hence new approaches to fundamental
computing components such as storage have been sought.
Network storage in which data is stored over a fast network is
being used as the modus operandi in many systems, such as the
Google Chrome Book. Emerging technologies such as 802.11p
and 5G will give rise to the ubiquitous deployment of vehicular
networks. A Vehicular Ad-Hoc Network (VANET/ ITS-G5)
is an example of such systems. These networks work by
using Road Side Units (RSUs), Access Points (APs) or Base
Stations (BSs) on the road side infrastructure and Onboard
Units (OBUs) in the vehicles or on cyclists and pedestrians.

However, providing reliable network storage in such en-
vironments raises a number of challenges. Firstly, there is a
need to fully understand the communication dynamics with
regard to ensuring seamless connectivity in such systems. This
issue has been explored in the Y-Comm framework by using
proactive handover techniques [1]. The second issue is about
mechanisms that allow the intelligent migration of services to
edge systems such as RSUs, APs and BSs. This will result
in the ability to maintain a high Quality of Service (QoS) to
users as they move around. This paper brings together these
two issues to explore providing reliable storage for mobile
nodes(MNs).

This paper, therefore, investigates the performance of dif-
ferent state-of-the-art service migration techniques, such as
KVM, Docker [2], LXD and more recently Unikernels within
the context of a real VANET experimental test-bed setup
deployed at Middlesex University. Though mechanisms such
as Kubernetes are available to manage workloads in a dis-
tributed environment, they do not take into account highly
mobile environments such as vehicular networks. Hence, in
order to better understand how reliable network storage as well
as mobile services provisioning could be achieved within an
dynamic edge-based VANET environment, two scenarios are
considered, such as: proactive and reactive service migration.

This paper significantly contributes to our understanding
of providing, not just storage, but mobile services in an
edge environment for highly mobile systems. The rest of the
paper is as follows: Section 2 looks at related work while
Section 3 strives to understand the communication dynamics
of vehicular networks. Section 4 explores the analysis of
Edge-to-Edge Service Migration while Section 5 looks at
the prototype environment for the new framework. Section 6
investigates different server migration mechanisms. The results
are presented in Section 7 while Section 8 concludes the paper.

II. RELATED WORK

A. Network Storage

Distributed Storage systems have been developed and built
over many years. A major effort was the Serverless Network
Filing System [3] or xFS, which looked at using a set of
machines in a peer-to-peer fashion to provide storage for
other machines over a wide area network. Like the Andrew
File System (AFS) [4], the xFS design attempted to make
extensive use of both memory caches and local on-disk caches
at client nodes and used clustering as well as sophisticated
cache coherency algorithms to eliminate the need for a central
server at the core of the system. In [5], the authors showed that
network storage could be implemented without the need for
special hardware. The design supported mobile users by using
a two-level system. The systems used a network memory cache
or NMC which could be migrated to a machine on the same
network as the mobile node and a persistent storage service or
PSS which provided persistent storage as well as redundancy
in the core network.



B. Migration of services

Authors in [6] proposed an optimal Web service migration
framework, they discussed its service replication and service
transferring strategies. They did experiments on different situ-
ations and acquired the appropriate service migration strategy
to be adopted based on the current workload. The migration of
the service for dynamic scheduling and dynamic deployment
helped to ensure better QoS.

In [7], the authors proposed dynamic service migration in
mobile edge computing based on a Markov decision process.
This process defined mobile applications that utilize cloud
resources. Such applications consisted of running a front end
and their components running on Cloud servers, where the
Cloud provided additional processing capabilities by using
Media Edge Clouds (MEC) to address the challenges such as
network overhead and latency by moving computation closer
to the user. However, MEC now faces a new challenge of
dynamic service placement and migration as mobile users
move around. They formulated general cost models and a
mathematical framework to design optimal service migration
and approximated the underlying state space by the distance
between user and service locations. Evaluations were based on
real-world mobility traces of San Francisco taxis. The results
showed that these mechanisms were faster than traditional
methods.

Service migration has been proposed for many environments
and is increasingly being used in Cloud environments that sup-
port virtualisation. This is possible because the virtual machine
paradigm allows entire virtual machines to be migrated. Virtual
machine migration can be expensive as the entire virtual
machine has to be moved. The emergence of container technol-
ogy, such as Docker [8], in which containers housing several
services are migrated, is gaining in prominence. Unikernels [9]
in which the operating system is bounded and customised to
run a single main application is the next emerging specimen
in this genre and should, from a management point-of-view,
make server migration simpler. However, in vehicular envi-
ronments, it is necessary to implement service migration in
the context of the communication dynamics and hence these
efforts are difficult to use without a wider service management
framework.

III. UNDERSTANDING THE COMMUNICATION DYNAMICS
OF VEHICULAR NETWORKS

In this section, we introduce a set of network coverage pa-
rameters that will be used in the following sections to demon-
strate the service migration in a highly mobile environment
such as a vehicular network. The network coverage area is a
region with an irregular shape where signals from a given Point
of Attachment (PoA) i.e., Access Point or Base Station can be
detected by a MN. The signals from the PoA are unreliable at
the boundary and beyond the coverage area, the signals from
the PoA cannot be detected. For seamless communication,
handover should be finished before the coverage boundary is
reached.

Therefore, two circles, denoted by the handover radius (Rz)
and the exit radius (R ), were defined in [10] to ensure smooth
handover. The work states that the handover must begin at
the exit radius and should be completed before reaching the
handover radius boundary as shown in Fig. 1.
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Fig. 1. Network Coverage

The exit radius will therefore be dependent on the velocity,
v, of the MN. If we represent the time taken to execute a
handover by Trp, then:

(R — RE)

v

Ter < 1

Hence, exit radius can be given as shown in Equation (2)

Rg <Ry — (v+Tgm) ()

Our previous work on proactive handover in [11] showed
that the above-mentioned coverage parameters can be seg-
mented into communication ranges and presented an in-depth
analysis of such segmentation and their importance in order
to achieve a seamless handover as shown in Fig. 2. This
segmentation can be put to effective use for achieving proac-
tive handover, resource allocation, and service migration for a
highly mobile environment.
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Fig. 2. Communication Range Segmentation

Time before handover (Y) is the time after which the
handover process should start and Time to handover (%) is the
time before which the handover to next coverage range has to
be completed. Network Dwell Time (R) is the time MN will
spend in the coverage i.e., the Network Dwell Distance (NDD)
of new network. Resource Hold Time (N) is the resource usage



time or when actual exchange of data is taking place. 2 and
N are the two key parameters that have to be considered for
service migration in highly mobile networks. From an analysis
of previous literature in [10], A, is set to a maximum value of
4 seconds.

IV. EDGE-TO-EDGE SERVICE MIGRATION

Along with the communication dynamics, it is also nec-
essary to explore edge-to-edge service migration in order to
support mobile services. Let us suppose the MN is travelling
at a velocity, v from one RSU’s coverage region to the next
RSU’s coverage range; with an estimate of the Y, & and N,
it is possible to decide whether a service should be migrated
with the knowledge of the service migration time or SMT.
Hence, SMT should be less than the sum of & and N in order
to have effective service in the new network. If the SMT is
greater than the sum of 7 and N then the MN will be out
of coverage of the next RSU due to mobility by the time the
service is migrated. This is expressed by Equation 3.

(h+N)>SMT 3)

The above equation denotes a reactive approach. When
the MN reaches the next coverage range, the service will be
migrated to the next RSU. In summary, for this scenario, the
communication handover and service migration begin at the
same time, this is called a reactive service migration. This
approach might disrupt the service due to mobility for services
with high migration times.

Hence, for better QoS and Quality of Experience (QoE),
we need to also consider proactive service migration. In
this approach the service migration will begin before the
communication handover as shown in Fig. 3. The point where
the service is starting to migrate is called the proactive service
migration time (X). When the service begins to migrate at
point X before the communication handover, so the amount
of time left is SMT-X. Thus proactive migration is shown
in Equation 4. This also means that, X should be less than
or equal to SMT, which will ensure that the service is not
migrated far ahead before the MN reaches the coverage of the
next RSU. However, in order to have a migration between
adjacent RSUs, X also needs to less than N as shown in
Equation 5. This is because service migration cannot begin
before the communication resources of the current RSU are
acquired.

(h+N)>(SMT — X) 4)

X<N &)
V. DEVELOPING A PROTOTYPE ENVIRONMENT FOR THE
NEW FRAMEWORK
A. NMS and FUSE as a Service

Using this approach, we will now consider a Network
Memory Server (NMS) that manages blocks of memory on
behalf of its clients. The NMS creates, reads, writes and
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Fig. 3. Proactive Service Migration

deletes blocks of memory using a simple socket interface. We
have incorporated the NMS as a back-end to the FUSE file
system which is a user-space file system commonly employed
in Linux environment as shown in Figure 4. The diagram in
Figure 5 depicts how the NMS and FUSE services are used in a
Vehicular Network. FUSE runs on the MN and communicates
with the NMS server running in the local network. As the MN
moves within the vehicular network the NMS is migrated to
a nearby RSU.
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libfuse |

NFS

[ ]

Kernel Space
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Fig. 4. FUSE and NMS integration

VI. INVESTIGATING DIFFERENT MIGRATION MECHANISMS
FOR NMS

It is necessary to look at how the NMS will be mi-
grated using different migration techniques. Four state-of-the-
art migration techniques, such as KVM, LXD, Docker and
Unikernels were deployed in order to test their performance.
A logical diagram of the network implementation is shown
in Figure 6. Two physical interfaces and one virtual bridge
are attached to the host computer: wireless adapter (wlpOs1),
Ethernet adapter (enpOsl), and one virtual bridge is created
as part of the VM virtual network (br0). Two virtual Ethernet
adapters are created per VM to represent the connections from
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TABLE I
LINUX HOST USED FOR LIVE MIGRATION WITHOUT SHARED STORAGE

Linux-host (HWs) Features

Device Dell Inspiron 5559
CPU Intel Core i5 6200U 2.4 GHz (4 cores)
RAM 16 GB RAM DDR3
Storage 256 SSD drive 1TB HDD drive
Host OS Archlinux (Kernel version 5.2 )

Network Realtek 1Gbps Ethernet, Intel802.11ac wireless adapter

the VM to the host computer in the form of veth interfaces.
Two interfaces are required, since one of them will be used
for service traffic (enp0Os8) and the second one (enp0Os3) for
management traffic. These veth interfaces are connected to the
enp0s8 and enpOs3 interfaces inside the VM guest operating
system.

enp0s3 enp0s3 enp0s3
VM1.1 VM2.1 VM2.1
veth1 veth1 veth1
VM1.1 VM14 || VM1
br0 br0
enp0s8 || enp0s3 enp0s8 enp0s8
node1 node1 node2 node2
veth1.1 | veth1.2 veth2 veth1.2
node1 node2

enp0s1 wip0s1 br0

Archlinux pysical host
Fig. 6. Logical Implementation Diagram

LXD live migration is dependent on the Checkpoint/Restore
in user-space (CRIU) library. Since CRIU must be aware of
the particularities of the process to checkpoint and the way
it utilizes the underlying resources. Thus, checkpoint creation

has several restrictions. A manual compilation of the CRIU
is required to guarantee a successful migration. In addition,
even when using the latest compiled version available, live
migration is not possible in all cases. In particular, any guest
OS that uses systemd as the method to manage user processes
fails to checkpoint due to systemd’s use of shared filesystem
mounts that interfere with the CRIU checkpoint process. Non-
systemd distributions, such as Devuan or Alpine are available
and can be migrated using this library.

A. KVM

Migration of the VM was done using the CLI with
gemu+ssh. However, the virtual hard disk (vHDD) needs to
be migrated in advance.

B. LXD

Migration over LXD is done using CRIU and an embedded
functionality called LXC move. A preshared SSH key is
required between two hosts to attempt migration. Then the
container information and snapshots are migrated as a delta of
the original image. If the migration is successful, the container
is deleted from the source and started on the target server [12].

At the time of initiating the migration, the local LXD
daemon checks for the existence of the declared container.
A token is created by the local LXD daemon and sent to the
remote target daemon, with the source URL and the local cer-
tificate identifying LXD local daemon. Then, the remote LXD
daemon connects to the local daemon via a control websocket,
using the provided token and the transfer mechanism is then
negotiated depending on the backend storage being used.

C. Docker

Docker migration is not defined as a feature in Docker
documentation. A checkpoint and restore capability using
CRIU and runc is available under experimental conditions.
This capability is not production-ready and it is evaluated for
comparison purposes with other technologies. A checkpoint
of the present state of the container is done in this scenario,
which requires the container to be stopped in advance. Docker
migration scripts were created using Bash scripting language
to provide migration capabilities based on the work in [13].

D. Unikernels

A Unikernel was compiled as part of this research to evalu-
ate the performance of live migration of Unikernel images over
KVM. In order to compile a Unikernel, a target application
needs to be defined, for this purpose, a simple NMS was
used. OSv was successfully used to compile a Unikernel with
the NMS. The migration algorithm for Unikernel images is
identical to KVM images, since the result of the Unikernel
compilation process is a QCOW2 KVM disk image. A VM
with similar vCPU and vRAM was created using the QCOW2
image compiled.



TABLE II
VM SPECIFICATIONS

Name| ID | HDD |RAM |vCPU |Network OS
VM |122{32 GB|2 GB| 2 1Gbps |Ubuntu 18.04

VII. MIGRATION RESULTS

The specification for the VM being used to house the NMS
is given in Table II. The four service migration methods were
evaluated in terms of NMS migration time and the results are
listed in Table III.

TABLE III
SERVICE MIGRATION RESULTS

Migration Mechanism NMS Migration Time

Unikernel KVM 11.99 s
LXD CRIU 2473 s
Docker Container 73.00 s
KVM 824.00 s

!

I}
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Fig. 7.

Middlesex University VANET experimental test-bed

In order to understand the impact of the service migration
time within a dynamic high mobility network environment,
the VANET testbed deployed at Middlesex University was
used. The real VANET experimental setup is illustrated in
Figure 7. It consists of 7 RSUs with three RSUs: 5, 6 and
7, located along the A41 which runs behind the Hendon
Campus. Using OBUs in vehicles, it was possible to measure
the different coverage parameters at 30 mph and at 50 mph.
These measurements are shown in Table IV.

Using the results from Tables III and IV, we can evaluate the
performance of the four service migration methods under two
scenarios: reactive and proactive service migration of NMS
within a real dynamic VANET environment.

(h+N)>SMT (6)

TABLE IV
COMMUNICATION COVERAGE SEGMENTATION DISTANCE AND TIME
(h = 4s).

RSUNo. NDD 30 Mph 50 Mph

h+ N h+ N
RSUI  300m  2237s 1342
RSU 2 456 m  3400s 2040 s
RSU 3 517 m 38.55 s 23.13 s
RSU4  248m  1849s  11.09s
RSU 5 974 m 72.63 s 43.57 s
RSU6  1390m 103.64s 62.19s
RSU 7 1140 m 85.00 s 51.00 s

TABLE V

REACTIVE SERVICE MIGRATION RESULTS
RSU |Unikernels |LXD |Docker| KVM
RSU1 Y N N N
RSU2 Y Y N N
RSU3 Y Y N N
RSU4 Y N N N
RSU5 Y Y N N
RSU6 Y Y Y N
RSU7 Y Y Y N

A. Results for Reactive Migration of NMS

Using Equation 6, it is possible to calculate whether a
reactive migration would succeed (given by Y) or would fail
(given by N). The results are shown in Table V.

B. Results for Proactive Migration of NMS

In order to look at Proactive Migration, we calculate X as
given by Equation 7.

(h+ N)>(SMT — X) )

The results are shown in Table VI. A value of zero indicates
that no proactive service migration time is required.

In addition, we said that to have a service migrate from
one RSU to an adjacent RSU, then X < N. Thus using the
results from Tables IV and VI, we can determine which
migration technique should use proactive mechanisms for
different RSUs. The results are shown in Table VII.

C. Evaluation of Overall Results

These results highlight key issues in providing services such
as reliable storage in a highly mobile environment. Unikernels

TABLE VI
PROACTIVE MIGRATION RESULTS FOR X [SEC]
RSU |Unikernels | LXD|Docker| KVM
RSU1 0 2.36 | 50.63 [801.63
RSU2 0 0 39 {790.00
RSU3 0 0 | 34.45 |785.45
RSU4 0 6.24 | 54.45 |805.51
RSUS5 0 0 0.37 |751.37
RSU6 0 0 0 720.36
RSU7 0 0 0 {739.00




TABLE VII
ADJACENT RSU SERVICE MIGRATION

RSU |Unikernels |LXD|Docker KVM
RSU1 Y Y N N
RSU2 Y Y N N
RSU3 Y Y Y N
RSU4 Y Y N N
RSUS5 Y Y Y N
RSU6 Y Y Y N
RSU7 Y Y Y N

showed that it was the fastest migration mechanism and
therefore could be used to provide reliable network storage
using reactive or proactive migration techniques. LXD also
showed good results as it is possible for it to be used by
all the RSUs when employing proactive migration techniques.
Docker showed mixed results and was unsuitable for RSUs
with relatively small coverage ranges while KVM could not
be used in both proactive or reactive migration mechanisms.
The main reason for the long delay in KVM migration is
because KVM attempts to migrate the whole Virtual Hard Disk
(vHDD) rather than just the amount of disk and memory being
used.

D. Towards a Service Management Framework

One possible solution is to use a shared memory architecture
in which the RSUs are connected by a separate network which
allows RSUs to share files. Preliminary results using shared
memory show that migration times of LXD and Docker were
measured at 5.6s and 11.6s respectively. The advantage of
using shared memory is that the vHDD does not have to
be migrated and so migration is much faster. However, this
approach is challenging in the context of vehicular networks.
The second approach is to look at using sophisticated caching
techniques on the FUSE side of the architecture. This will
increase the ability of the storage system to provide service
even when the service is being migrated to another RSU.
However, this work has revealed the need to look at building
a Service Management Framework or SMF which will allow
mobile services such as the Network Memory Server to be
readily available to mobile users. The SMF will manage the
availability, migration and replication of services to ensure that
mobile users continuously obtain the required QoS for their
applications and so guaranteeing a high QoE for mobile users.
These efforts to build a prototype SMF are being pursued
by the Networking Group at Middlesex University [14]. This
work is looking to use commodity hardware to implement a
system that could be built by many entities. In that regard
the Raspberry Pi can potentially provide a way to build a
distributed Service Management Framework that can be rolled
out on a global scale.

VIII. CONCLUSIONS AND FUTURE WORK

Providing reliable network storage in highly mobile envi-
ronment such as vehicular networks represents a significant

challenge. This paper evaluated the performance of four state-
of-the-art service migration methods, such as KVM, Docker,
LXD and Unikernels within a real VANET experimental test-
bed setup. Two scenarios were considered, such as proac-
tive and reactive service migration. The results showed that
Unikernels outperforms the other schemes involved under both
scenarios. While KVM is not a suitable solution in either of
the scenarios as the delay introduced is too high. Work is
now being done to build a Service Management Framework
to support the provision of mobile services such as reliable
network storage for mobile users.
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